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आमुख 

भा.कृ.अनु.प.- भारतीय कृषि साांख्यिकी अनुसांधान सांस्थान (भा.कृ.अनु.प.- भा.कृ.साां.अनु.सां.) साांख्यिकीय 
षिज्ञान, कृषि साांख्यिकी, सांगणक अनुप्रयोग और ÿैि सूýना षिज्ञान) में प्रासांषगकता का एक प्रमुख सांस्थान है 
और कृषि अनुसांधान और सूषýत नीषत षनणणय लेने की गुणित्ता को समृद्ध करने के षलए कृषि षिssज्ञान में उनका 
षििेकपूणण सांलयन है। 1930 में अपनी स्थापना के बाद से, तत्कालीन इांपीररयल काउां षसल ऑफ एग्रीकल्ýरल 
ररसýण के एक þोटे से साांख्यिकीय खांड के रूप में, सांस्थान का कद बढा है और इसने राष्ट्र ीय और अांतरराष्ट्र ीय 
स्तर पर अपनी उपख्यस्थषत दÿण कराई है। सांस्थान बहुत सषिय रूप से सलाहकार सेिा का अनुसरण कर रहा 
है षÿसने सांस्थान को राष्ट्र ीय कृषि अनुसांधान और षिक्षा प्रणाली (एन.ए.आर.ई.एस.) और राष्ट्र ीय कृषि साांख्यिकी 
प्रणाली (एन.ए.एस.एस.) दोनोां में अपनी उपख्यस्थषत दÿण कराने में सक्षम बनाया है। कृषि अनुसांधान और नीषत 
षनयोÿन की गुणित्ता बढाने के षलए उन्नत साांख्यिकीय तकनीकोां और सांस्थान में षिकषसत प्रयोगोां के कुिल 
रýना का व्यापक रूप से उपयोग षकया गया है। भा.कृ.अनु.प.- भा.कृ.साां.अनु.सां. कृषि में आधुषनक, 
अत्याधुषनक सूýना और सांýार प्रौद्योषगकी (आई.सी.टी.) के हस्तके्षप से सांबांषधत अनुसांधान, षिक्षण और 
प्रषिक्षण गषतषिषधयोां में भी सषिय रूप से सम्मिषित है। राष्ट्र ीय कृषि निाýार पररयोÿना( एन.ए.आई.पी.) 
के तहत भा.कृ.अनु.प., यानी भा.कृ.अनु.प. डेटा सेंटर; भा.कृ.अनु.प. डी.सी.), भा.कृ.अनु.प.- -

एन.ए.ए.आर.एम., हैदराबाद में डेटा ररकिरी सेंटर (कृषि मेघ) के तहत राष्ट्र ीय कृषि उच्च षिक्षा पररयोÿना 

(एन.ए.एý.ई.पी.)। 

कृषिम बुख्यद्धमत्ता (ए.आई.) की हाषलया लहर ने डेटा साइांस के के्षि में एक नया आयाम ÿोडा है। इन 

हाषलया ए.आई. हस्तके्षपोां का लाभ उठाते हुए कृषि भी उसी गषत से आगे बढ रही है। भा.कृ.अनु.प.- 
भा.कृ.साां.अनु.सां. अपने कई उच्च गुणित्ता िाले पररणामोां और उच्च प्रभाि िाले प्रकािनोां के साथ एन. 

ए. आर. ई. एस. के भीतर ए.आई. अनुसांधान करने िाले अग्रणी सांस्थानोां में से एक है। ए.आई. आधाररत 

उपकरणोां और तकनीकोां को षिकषसत करने के षलए पायथन िैज्ञाषनक समुदाय में सबसे लोकषप्रय 

प्रोग्राषमांग भािा के रूप में उभरा है। इसषलए, इस कायणिम को "कृषि में कृषिम बुद्धिमत्ता के षिए 
पाइथन" पर प्रषिक्षण प्रदान करने के षलए षडजाइन षकया गया है ताषक प्रषतभाषगयोां को आांकडोां का 
षिशे्लिण, आांकडोां का प्रषतरूपण, उन्नत मिीन षिक्षा और गहन षिक्षा कलन षिषध, िेब ए पी आई 

आषद षिकषसत करने में सक्षम बनाया ÿा सके। 

इस पाठ्यिम के सांकाय में सांगणक अनुप्रयोग और कृषि साांख्यिकी के के्षि में सुस्थाषपत िैज्ञाषनक िाषमल 

हैं। सांदभण पुख्यस्तका में व्यािान षटप्पषणयाां षििय की व्यािा प्रदान करते हैं। मुĀे उम्मीद है षक सांदभण 
पुख्यस्तका प्रषतभाषगयोां के षलए काफी उपयोगी होगी। मैं इस अिसर पर पूरे सांकाय को एक अद्भुत काम 

करने के षलए धन्यिाद देता हां। मैं डॉ. सुदीप, डॉ. सांषýता नाहा और डॉ. मोहम्मद अिरफुल हक, इस 

प्रषिक्षण कायणिम के पाठ्यिम समन्वयक, को समय पर इस मूल्यिान दस्तािेÿ को लाने के षलए बधाई 

देना ýाहते हैं। हम इस सांदभण पुख्यस्तका को बेहतर बनाने के षलए प्रते्यक भागीदार के सुĀािोां की प्रतीक्षा 
कर रहे हैं। 

डॉ. राÿेंद्र प्रसाद 

षनदेिक, भा.कृ.अनु.प.-भा.कृ.साां.अनु.सां. 
षदनाांक: 02 फरिरी 2023 

पूसा, नई षदल्ली 



FOREWORD 

ICAR-Indian Agricultural Statistics Research Institute (ICAR- IASRI) is a premier Institute of 

relevance in Statistical Sciences (Statistics, Computer Applications and Bioinformatics) and their 

judicious fusion in agricultural sciences for enriching quality of agricultural research and informed 

policy decision making. Ever since its inception in 1930, as a small Statistical Section of the then 

Imperial Council of Agricultural Research, the Institute has grown in stature and made its presence felt 

both nationally and internationally. The Institute has been very actively pursuing advisory service that 

has enabled the institute to make its presence felt both in National Agricultural Research and Education 

System (NARES) and National Agricultural Statistics System (NASS). The advanced statistical 

techniques and efficient design of experiments developed at the institute have been widely used for 

enhancing the quality of agricultural research and policy planning. ICAR-IASRI is also actively 

engaged in research, teaching and training activities related to modern, cutting-edge Information and 

Communication Technology (ICT) interventions in agriculture. The institute has many achievements in 

terms of establishing several IT infrastructures for ICAR, i.e., ICAR Data Centre (ICAR DC) under 

National Agricultural Innovation Project (NAIP), ICAR Data Recovery centre (Krishi Megh) in ICAR-

NAARM, Hyderabad under National Agricultural Higher Education Project (NAHEP).  

The recent wave of Artificial Intelligence (AI) has added a new dimension to the field of data science. 

Agriculture is also keeping up at the same pace taking advantage of these recent AI interventions. ICAR-

IASRI is one of the pioneer institutes in conducting AI research within NARES with many of its high-

quality outcomes and high impact publications. Python has emerged as the most popular programming 

language in the scientific community for developing AI- based tools and techniques. Therefore, this 

programme has been designed to impart training on “Python for Artificial Intelligence in 

Agriculture” to enable participants to perform data analysis, data modelling, develop advanced 

machine learning and deep learning algorithms, web APIs etc.  

The faculty for this course comprises well-established scientists in the discipline of Computer 

Applications and Agricultural Statistics. The lecture notes in the reference manual provide an exposition 

of the subject. I hope that the reference manual will be quite useful to the participants. I take this 

opportunity to thank the entire faculty for doing a wonderful job. I wish to complement Dr. Sudeep, Dr. 

Sanchita Naha and Dr. Md Ashraful Haque, Course Coordinators of this training program, for bringing 

out this valuable document in time. We look forward to suggestions from each participant in improving 

this reference manual. 

 

 

 
Date: 02.02.2023 
New Delhi 

Dr. Rajender Parsad 
Director, ICAR-IASRI 



प्रस्तावना 

भा.कृ.अनु.प.-भारतीय कृषि साांख्यिकी अनुसांधान सांस्थान साांख्यिकीय षिज्ञान (कृषि साांख्यिकी, सांगणक 

अनुप्रयोग, और जैि सूचना षिज्ञान) में प्रासांषगकता का एक प्रमुख सांस्थान है और कृषि अनुसांधान की 
गुणित्ता को समृद्ध करने एिां नीषतगत षनणणय लेने के षलए कृषि षिज्ञान में उनका षििेकपूणण सांलयन है। 
सांस्थान ने कृषि अनुसांधान के षलए उपयोगी षिषभन्न सॉफ्टिेयर, िेब एख्यिकेशन, मोबाइल ऐप और अब कृषिम 
बुख्यद्धमत्ता (एआई) आधाररत उपकरण, तकनीक और कायणप्रणाली षिकषसत करने का नेतृत्व षकया है। 

एआई के हाषलया उदय के बाद से, डेटा िैज्ञाषनकोां और अन्य डोमेन षिशेिज्ञोां को एआई प्रषशक्षण और 
सांिेदीकरण की स्पष्ट रूप से आिश्यकता है। सांस्थान के मुि अनुसांधान षहतोां में से एक कृषि के षलए एआई-
आधाररत उपकरणोां और पद्धषतयोां का षिकास है। इसके अलािा, आर, पायथन आषद जैसे सॉफ्टिेयर षिषभन्न 
कृषि प्रयोगोां से प्राप्त आांकडोां के षिशे्लिण में प्रमुख भूषमका षनभा रहे हैं। भा.कृ.अनु.प.-भा.कृ.साां.अनु.सां. 
फरिरी 02-11, 2023 के दौरान भा.कृ.अनु.प. या एस.एयू./सी.एयू./आई.सी.ए.आर. षित्तपोषित केिीके के 
सभी िैज्ञाषनक कमणचाररयोां के षलए "कृषि में कृषिम बुद्धिमत्ता के षिए पाइथन" पर एक लघु पाठ्यक्रम 
आयोषजत कर रहा है। इस लघु पाठ्यक्रम का उदे्दश्य प्रषतभाषगयोां को कृषिम बुख्यद्धमत्ता (ए.आई.) और मशीन 
लषनिंग (एम.एल.) अनुप्रयोगोां को षिकषसत करने में उपयोग षकए जाने िाले पायथन प्रोग्राषमांग से पररषचत 
कराना है। हमारा उदे्दश्य प्रषतभाषगयोां को षिषभन्न एआई और एमएल उपकरणोां और तकनीकोां के बारे में 
अभ्यास सिोां से पररषचत कराना है, षजससे िे पाइथन में अपने स्वयां के अनुप्रयोगोां को षिकषसत कर सकें । 

हमने एआई अनुप्रयोगोां के षिकास पर षसद्धाांत और व्यािहाररक दोनोां कक्षाओां की पेशकश करने के षलए इस 
पाठ्यक्रम को षडजाइन षकया है। इस पाठ्यक्रम के अांतगणत आने िाले षिियोां में एआई का पररचय और कृषि 
में इसका दायरा, पाइथन का बुषनयादी षसांटैक्स, पाइथन में व्यािहाररक सि, प्रोग्राषमांग की िसु्त-उनु्मख 
अिधारणा, डेटा हैंडषलांग और षिजुअलाइजेशन तकनीक, एम.एल. की तकनीक और उपयुक्त पैकेज, 
षडषजटल इमेज, प्रसांस्करण, िेब षिकास ढाांचा आषद शाषमल हैं। 

हम इस अिसर पर सांस्थान के षशक्षकोां को धन्यिाद देना चाहते हैं षजन्ोांने इस पाठ्यक्रम को सफल बनाने में 
अपना बहुमूल्य समय षदया है। उनके सहयोग के षबना इस षनयमािली को समय पर पूरा करना सांभि नही ां 
होता। हम इस प्रषशक्षण कायणक्रम में अपने कमणचाररयोां को प्रषतषनयुक्त करने के षलए षिषभन्न भा.कृ.अनु.प. 
सांस्थानोां और राज्य कृषि षिश्वषिद्यालयोां के भी आभारी हैं। हम डॉ. राजेंद्र प्रसाद, षनदेशक, भाकृअनुप-
भाकृसाांअसां के उनके बहुमूल्य मागणदशणन और पाठ्यक्रम के सुचारू सांचालन के षलए सभी आिश्यक सुषिधाएां  
उपलब्ध कराने के षलए आभारी हैं। हम उन सभी के आभारी हैं षजन्ोांने इस प्रषशक्षण षनयमािली को तैयार 
करने में प्रत्यक्ष ि अप्रत्यक्ष रूप से हमारी सहायता की है। 

 

                               

(डॉ सांषचता नाहा)                             
पाठ्यक्रम सांयोजक 

(डॉ. मो. अशरफुल हक) 
पाठ्यक्रम सांयोजक 
 

(डॉ सुदीप) 
पाठ्यक्रम षनदेशक 

 



PREFACE 

ICAR- Indian Agricultural Statistics Research Institute (ICAR-IASRI) is a premier Institute 

of relevance in Statistical Sciences (Statistics, Computer Applications and Bioinformatics) 

and their judicious fusion in agricultural sciences for enriching quality of agricultural research 

and informed policy decision making. The Institute has taken a lead in developing various 

Software, Web Applications, Mobile apps and now Artificial Intelligence (AI) based tools, 

techniques, and methodologies useful for Agricultural Research. 

Since the recent rise of AI, data scientists and other domain experts are clearly in need of AI 

training and sensitization. One of the institute's main research interests is the development of 

AI-based tools and methodologies for agriculture. Moreover, software like R, Python etc. are 

playing major roles in analysing data emerged from various agricultural experiments. ICAR-

IASRI is organizing a Short Course on "Python for Artificial Intelligence in Agriculture" for 

all the scientific staff of ICAR or SAUs/CAUs/ICAR funded KVKs during February 02-11, 

2023 (10 days). The aim of this short course is to familiarize participants with Python 

programming used in developing Artificial Intelligence (AI) and Machine Learning (ML) 

applications. Our objective is to acquaint the participants about various AI and ML tools and 

techniques with hands on practice sessions enabling them to develop their own applications 

in python.  

We have designed this course to offer both theory and practical classes on developing AI 

applications. The topics covered under this course include introduction to AI and its scope in 

agriculture, basic syntax of python, hands on practical sessions in python, object-oriented 

concepts of programming, data handling and visualization techniques, machine learning 

techniques and suitable packages, digital image processing, Web development framework etc.  

We would like to take this opportunity to thank the faculty of the institute who have spared 

their valuable time in making this course successful. Without their cooperation timely 

completion of this manual would not have been possible. We are also thankful to the various 

ICAR Institutes and State Agricultural Universities for deputing their employees in this 

training programme. We are grateful to Dr. Rajender Parsad, Director, ICAR-IASRI for his 

valuable guidance and making all necessary facilities available for smooth conduct of the 

course. We are thankful to each and every one who has supported us directly or indirectly for 

preparing this training manual. 

 

 (Dr Sudeep) 

Course Director 

 

(Dr Md Ashraful Haque) 

Course Coordinator 

 

(Dr Sanchita Naha) 

Course Coordinator 



 
 

Short Course on 

“Python for Artificial Intelligence in Agriculture” 
02 – 11 February 2023 

COURSE SCHEDULE 

Date & Day 09:15-09:30 09:30 – 11:15 11:15 – 12:30 12:30-13:30 14:30 – 15:45 16:00 – 17:30 

02.02.2023 
(Thursday) Registration 

Introduction to 
Artificial 

Intelligence 
(Sudeep 

Marwaha) 

Inauguration 
Introductory

Python 
(Madhu) 

Introduction to 
Python, Basic 

Syntax, 
variables and 

Operators 
(Madhu) 

Practice session 
I 

Date & Day Time 
09:15-11:00 11:15 – 13:00 14:00 – 15:45 16:00 – 17:30 

03.02.2023 
(Friday) 

Data Structures, Control 
Structures and Loops 
(Md. Ashraful Haque) 

Practice session II 
Functions, Module, 

File Handling,  
(Akshay Dheeraj) 

Practice session III 

04.02.2023 (Saturday) HOLIDAY  
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Introduction to Artificial Intelligence 

Sudeep 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi - 110 012 
sudeep@icar.gov.in 

1. Introduction 

The Artificial Intelligence is a very old field of study and has a rich history. Modern 
AI was formalized by John McCarthy, considered as father of AI. It is a branch of 
computer science, founded around early 1950’s. Primarily, the term Artificial 
Intelligence (or AI) refers to a group of technique that enables a computer or a 
machine to mimic the behaviour of humans in problem solving tasks. Formally, AI is 
described as “the study of how to make the computers do things at which, at the 
moment, people are better” (Rich and Knight, 1991; Rich et al., 2009).”The main aim 
of AI is to program the computer for performing certain tasks in humanly manner 
such as knowledgebase, reasoning, learning, planning, problem solving etc. The 
Machine Learning (ML) techniques are the subset of AI which makes the 
computers/machines/programs the capable of learning and performing tasks without 
being explicitly programmed. The ML techniques are not just the way of mimicking 
human behaviour but the way of mimicking how humans learn things. The main 
characteristics of machine learning is ‘learning from experience’ for solving any kind 
of problem. The methods of learning can be categorized into three types: (a) 
supervised learning algorithm is given with labelled data and the desired output 
whereas (b) unsupervised learning algorithm is given with unlabelled data and 
identifies the patterns from the input data and (c) reinforcement learning algorithm 
allows the ML techniques to capture the learnable things on the basis of rewards or 
reinforcement. Now, the Deep Learning (DL) technique are the advanced version of 
machine learning algorithms gained much popularity in the area of image recognistion 
and computer vision. The artificial neural networks (ANNs) clubbed with 
representation learning are the backbone of the deep learning concepts. These 
techniques allows a machine to learn patterns in the dataset with multiple levels of 
abstractions. The DL models are composed of a series of non-linear layers where each 
of the layer has the capability of transforming the low-level representations into 
higher-level representations i.e. into a more abstract representations (LeCun et al., 
2015). There are several DL algorithms available now-a-days such as Deep 
Convolutional Neural Networks, Deep Recurrent Neural networks, Long Short-term 
Memory (LSTM)”networks that are being applied to different areas of engineering, 
bioinformatics, agriculture, medical science and many more (Fusco et al., 2021). 

2. Applications of Artificial Intelligence in Agriculture: 

In present scenario, AI techniques are being exponentially applied in the various areas 
of the agricultural domain. These areas can be categorized into the following groups: 
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Soil and water management, Crop Health Management, Crop Phenotyping, 
Recommender-based systems for crops, Semantic web and Ontology driven expert 
systems for crops and Geo-AI. The application of AI, ML and DL based techniques 
on these areas are discussed in the following sections. 

2.1 Soil and Irrigation Management:  

Soil and irrigation are the most viable components of agriculture. The soil and 
irrigation are the determinant factors for the optimum crop yield. In order to obtain 
enhanced crop yield and to maintain the soil properties, there is a requirement of 
appropriate knowledge about the soil resources. The management of irrigation 
becomes crucial when there are scares of water availability. Therefore, the soil and 
irrigation related issues should be managed properly and cautiously to ensure a 
potential yield in crops. In this regards, AI and ML based techniques have shown 
potential ability to resolve soil and irrigation related issues in crops. A range of 
machine learning models such as linear regression, support vector machines (or 
regressors), Artificial neural networks, random forest algorithm and so on are being 
used. Many researchers have used remote-sensed data with the machine learning 
techniques for determining soil health parameters. In this section, few significant 
works in this field are highlighted below: 

A. Soil Management: 

Besalatpour et al., (2011), Aitkenhead et al., (2012) and Sirsat et al., (2017) used different 

machine learning techniques such as linear regression, support vector machine, random 

forests for the prediction of the physical and chemical properties of soil. Rivera et al. (2020) 
and Azizi et al., (2020) worked on estimation and classification of aggregate stability 
of the soils using conventional machine learning techniques as well as deep learning 
models. Jha et al., (2018) worked on prediction of microbial dynamics in soils using 
regression-based techniques. Patil and Dekha (2016) and Mehdizadeh et al (2017) worked 

on predicting the evapotranspiration rate in crops using several machine learning techniques. 

Researchers worked on mapping the soil properties digitally using the remote sensing data 

with the help of machine learning and deep learning models (Taghizadeh-Mehrjardi et al. 

2016; Kalambukattu et al., (2018; Padarian et al. 2019; Taghizadeh-Mehrjardi et al., 2020). 

B. Irrigation management: 

Zema et al. 2018 applied Data Envelopment Analysis (DEA) with Multiple 
Regression analysis to improve the irrigation performance Water Users Associations. 
Ramya et al. 2020 and Glória et al., 2021worked on IoT based smart irrigation systems 
with machine learning models. Agastya et al, 2021 and Zhang et al. 2018 used deep 
learning-based CNN models for detection of irrigations using remote sensing data. 
Jimenez et al. 2021 worked on estimating the irrigation based on soil matric potential. 

2.2 Crop Health Management: 

Every year a significant amount of yield is damaged due to attack of disease causing 
pathogens and insect-pest infestation. In order to manage the spread of the diseases 
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and insect-pests, proper management practices should be applied at the earliest. 
Therefore, there is requirement of automatic diseases, pest identification system. In 
this regard, image-based diagnosis of diseases and pests have become de facto 
standard of automatic stress identification. This kind of automated detection 
methodology use sophisticated deep learning-based AI techniques that reduces the 
intervention of the human experts. There are several attempts have been done to 
diagnose the diseases as well as insects-pests in crops using deep learning techniques. 
In this section, some of the significant works in this field have been discussed briefly.  

A. Disease identification: 

Mohanty et al. 2016 worked on disease diagnosis problem using deep CNN models. 
They used an open-source dataset named PlantVillage (Hughes and Salathe, 2016) 
containing 54,306 digital images of 26 diseases from 14 crops. Ferentinos, 2018 
worked on developing deep CNN-based models for recognising 56 diseases from 
different crops. Barbedo, 2019 applied transfer learning approach  for diagnosis of  
diseases of 12 different crops. Too et al. 2019, applied pre-trained deep CNN models 
for identification of diseases of 18 crops using the PlantVillage data. Chen et al. 2020 
applied a pretrained VGGNet network for classifying the diseases of Rice and Maize 
crop. Chen et. al. 2020 and Rahman et al. 2020 worked on identifying the major 
diseases of Rice crop. Lu et al., 2017; Johannes et al. 2017; Picon et al. 2019 and 
Nigam et al. 2021 applied deep CNN models for recognising the diseases of wheat 
crop. Priyadharshini et al. 2019; Sibiya & Sumbwanyambe, 2019; Haque et al. 2021 
used deep learning models for identifying diseases of maize crop. 

B. Pest Identification: 

Pest Identification problem is inherently different from disease detection. As 
compared to disease detection there are less number of work has found in the 
literature. Some of the research of pest identification has been discussed in the 
following section. 

Cheeti et al. (2021) developed a model for pest detection and classification of peat 
using YOLO(You look only once) and CNN. YOLO  algorithm is used for detection 
of pest in an image and Alex net CNN is used for pest classification. Chen et al. (2021) 
propose an AI-based pest detection system for solving the specific issue of detection 
of scale pests based on pictures. Deep-learning-based object detection models, such 
as faster region-based convolutional networks (Faster R-CNNs), single-shot multibox 
detectors (SSDs), and You Only Look Once v4 (YOLO v4), are employed to detect 
and localize scale pests in the picture. Taiwan Agricultural Research Institute, Council 
of Agriculture, has collected images of the three types of pests from the actual fields 
for decades. Fuentes et al. (2017) address disease and pest identification by 
introducing the application of deep meta-architectures and feature extractors. They 
proposed a robust deep-learning-based detector for real-time tomato diseases and 
pests recognition. The system introduces a practical and applicable solution for 
detecting the class and location of diseases in tomato plants, which in fact represents 
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a main comparable difference with traditional methods for plant diseases 
classification. Karnik et al. (2021)  image pre-processing and data augmentation 
techniques has been performed to get better image.yolov3 classification for 
classifying plant leaf disease of pepper bell, potato and tomato. This proposed in 
divided into two stage part first classifier and second stage classifier where in first 
classifier it will preprocess of median filter and data augmentation is used and trained 
in yolov3 algorithm and in second stage classifier it will perform the extract plant leaf 
image output using Resnet50 based. So, it two step classification approach. Based on 
this research work we achieved 94% accuracy of detection lead diseases. Experiments 
showed [Li et al. (2020)] that our system with the custom backbone was more suitable 
for detection of the untrained rice videos than VGG16, ResNet-50, ResNet-101 
backbone system and YOLOv3 with our experimental environment. Liu et al.2020 
used Yolo V3 model is a little inadequate in the scale when recognizing tomato 
disease spots and pests.  

2.3 Plant Phenomics: 

Non-destructive phenotypic measurement with high throughput imaging technique 
becoming extremely popular. High throughput imaging system produces a large 
number of images. Deduction of the phenotypic characteristics through image 
analysis is quick and accurate. A wide range of phenotypic study can be done using 
phenomics analysis. High throughput imaging system coupled with sophisticated AI 
technology like deep learning make this field more efficient and accurate. Phenomics 
is has been used for study of several phenotypic characters like spike detection and 
counting, yield forecasting, quantification of the senescence in the plant, leaf weight 
and count, plant volume, convex hull, water stress and many more. 

2.4 Recommender Systems:  

Recommender systems (RSs) help online users in decision making regarding products 
among a pile of alternatives. In general, these systems are software solutions which 
predict liking of a user for unseen items. RSs have been mainly designed to help users 
in decision making for areas where one is lacking enough personal experience to 
evaluate the overwhelming number of alternative items that a website has to offer 
[Resnick & Varian, 1997]. Recommender systems have proved its worth in many 
different applications like e-commerce, e-library, e-tourism, e-learning, e-business, e-
resource services etc. by suggesting suitable products to users [Lu et al., 2015]. RSs 
are used to introduce new/unseen items to users, to increase user satisfaction etc. 
Recommendations are generated by processing large amount of historical data on the 
users and the products to be suggested. Most popular way of gathering users liking on 
a particular product is in terms of rating either in numerical scale (1 to 5) or ordinal 
scale (strongly agree, agree, neutral, disagree, strongly disagree). Other techniques of 
more knowledge-based recommendation are the use of Ontologies [Middleton et al., 
2002] of user profiles or item descriptions etc. The core task of a recommendation 
system is to predict the usefulness of an item to an individual user based on the earlier 
history of that item or by evaluating the earlier choices of the user. Collaborative way 
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of user modelling [Konstan et al., 1997] is where ratings are predicted for <user, item> 
pair, !!<u, i> based on a large number of ratings previously gathered by the system on 
individual <user, item> pairs. Another way of recommendation is to suggest items 
that are similar to the ones previously liked by the user, called Content based filtering 
[Wang et al., 2018; Smyth, 2007]. In a hybrid method of prediction, limitations by 
the earlier mentioned processes are tackled in various ways. 

Agriculture has used recommender systems since 2015 and continues to do so. RSs 
have been explored to develop crop recommendation strategies based on soil and 
weather parameters, crop rotation practices, water management, suggestion on 
suitable varieties, recommendations for management practices etc. It is absolutely 
essential for the farmers to receive recommendations on the best crop for cultivation. 
Kamatchi and parvati, 2019 proposed a hybrid RS in combination with Collaborative 
Filtering, Case-based Reasoning and Artificial Neural Networks (ANN) to predict 
future climatic conditions and recommendation of crops based on the predicted 
climate. Crop recommendations have been developed based on season and 
productivity [Vaishnavi et al., 2021], area and soil type [Pande et al., 2021] by using 
several machine learning algorithms like Support vector Machine (SVM), Random 
forest (RF), Multivariate Linear regression (MLR), K- Nearest neighbour (KNN), 
ANN etc. Ensemble techniques have been used to develop a collaborative system of 
crop rotation, crop yield prediction, forecasting and fertilizer recommendation 
[Archana et al., 2020]; to classify soil types into recommended crop types Kharif or 
Rabi based on specific physical and chemical characteristics, average rainfall and 
surface temperature [Kulkarni et al., 2018]. Naha and Marwaha, 2020 presented an 
Ontology driven context aware RS that can recommend land preparation methods, 
sowing time, seed rate, fertilizer management, irrigation scheduling and harvesting 
methods to Maize cultivators. Application of RSs has also penetrated in the e-
agriculture domain by suggesting   parts of agricultural machineries in online ordering 
[Ballesteros et al., 2021]. 

2.5 Semantic web, Knowledgebase and Natural Language processing: 

Agriculture is vast source of resources and so it is also a vast source of information. 
The problem with this information is most of the information are unstructured. That 
unstructured knowledge is merely understandable for machine. It is also has low 
accessibility for human too. The main objectives of the semantic web and knowledge 
base system is to make unstructured data into structured one. Semantic web and the 
knowledgebase mainly facilitated by the ontology in the back end. Ontology is a 
formal, explicit specification of a shared conceptualization (Gruber, 1993). Making 
of Ontology that facilitated the semantic web and knowledge base can be made across 
the agricultural domain to make the unstructured data into structured one. Many 
ontology has already been developed in accordance with the Bedi and Marwaha, 2004 
in the agricultural domain. Saha et. al., (2011) developed an ontology on dynamic 
maize variety selection in different climatic condition, Sahiram et.al., (2012) 
developed a ontology on rapeseed and mustard for identification of the variety in 
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multiple languages, Das et. al., (2011) developed a ontology for USDA soil taxonomy 
and ontology was extended by Deb et. al., (2012), Biswas et. al., (2012) developed a 
ontology on microbial taxonomy and was extended by Karn et. al., (2014).  

2.6 GIS and Remote sensing coupled with AI: 

GIS and Remote sensing is helping agricultural community since long. The land use 
planning, land cover analysis, forest distribution, water distribution, water use pattern, 
crop rotation and crop calendar analysis can be done by GIS and remote sensing. But 
when the AI and machine learning coupled with these technology it become more 
powerful. Machine learning and AI efficiently used for correct land classification and 
phonological change detection. From Digital soil mapping to yield forecasting, from 
phenology detection to leaf area index a vast range of the area in agriculture can be 
handled by GIS and Remote sensing. 
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Introduction to Python: Basic Syntax, Variables and Operators 

Madhu  

ICAR-Indian Agricultural Statistics Research Institut, New Delhi - 110 012 
madhu.dahiya@icar.gov.in 

Introduction to Python: 

Python is a very popular general-purpose interpreted, interactive, object-oriented, and 
high-level programming language. Python is dynamically-typed and garbage-
collected programming language. It was created by Guido van Rossum during 1985- 
1990. Like Perl, Python source code is also available under the GNU General Public 
License (GPL). 

Characteristics of Python: Following are important characteristics of Python 
Programming- 

• It supports functional and structured programming methods as well as OOP. 
• It can be used as a scripting language or can be compiled to byte-code for 

building large applications. 
• It provides very high-level dynamic data types and supports dynamic type 

checking. 
• It supports automatic garbage collection. 

It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java. 

Basic Python Syntax: 

The basic syntax of the python programming language is as follows:  

print('India is my country.') 
 
Variables in Python: 
 
x=2 
y="India" 
print(x) 
print(y) 
 
Type Casting 
 
x=str(5) 
y=int(5.0) 
z=float(5) 
print(x) 
print(y) 
print(z) 
print(type(x)) 
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print(type(y)) 
 
Single & Double Quotes 
 
x="india" 
y='india' 
print(x) 
print(y) 
 
Multiline Strings 
 
a = """hello, 
good morning,          
h r u, 
all.""" 
print(a) 
 
a = '''hello,             
good morning, 
h r u 
all.''' 
print(a) 

Python Data Types: 

Data types are the classification or categorization of data items. It represents the kind 
of value that tells what operations can be performed on a particular data. Since 
everything is an object in Python programming, data types are actually classes and 
variables are instance (object) of these classes. Following are the standard or built-in 
data type of Python: 

• Numeric 
• Sequence Type 
• Boolean 
• Set 
• Dictionary 
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Numeric: In Python, numeric data type represents the data which has numeric value. 
Numeric value can be integer, floating number or even complex numbers. These 
values are defined as int, float and complex class in Python. 

• Integers – This value is represented by int class. It contains positive or negative 
whole numbers (without fraction or decimal). In Python there is no limit to how 
long an integer value can be. 

• Float – This value is represented by float class. It is a real number with floating 
point representation. It is specified by a decimal point. Optionally, the character e 
or E followed by a positive or negative integer may be appended to specify 
scientific notation. 

• Complex Numbers – Complex number is represented by complex class. It is 
specified as (real part) + (imaginary part)j. For example – 2+3j 

Note – type() function is used to determine the type of data type. 
Float 
x = 1.10 
y = 1.0 
z = -35.59  
print(type(x)) 
print(type(y)) 
print(type(z)) 
 
int 
x = 1 
y = 3565 
z = -3255522 
print(type(x)) 
print(type(y)) 
print(type(z)) 
 
complex 
x = 3+5j 
y = 5j 
z = -5j 
print(type(x)) 
print(type(y)) 
print(type(z)) 

 
Sequence Type: In Python, sequence is the ordered collection of similar or different 
data types. Sequences allows to store multiple values in an organized and efficient 
fashion. There are several sequence types in Python – 

• String 
• List 
• Tuple 
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1) String: In Python, Strings are arrays of bytes representing Unicode characters. A 
string is a collection of one or more characters put in a single quote, double-quote 
or triple quote. In python there is no character data type, a character is a string of 
length one. It is represented by str class. 

Creating String 

Strings in Python can be created using single quotes or double quotes or even triple 
quotes. 

Accessing elements of String 

In Python, individual characters of a String can be accessed by using the method of 
Indexing. Indexing allows negative address references to access characters from the 
back of the String, e.g. -1 refers to the last character, -2 refers to the second last 
character and so on. 

 
print("Hello") 
print('Hello') 
a = "Hello" 
print(a) 
 
Strings are Arrays 
a = "Hello, World!"  # 0....n 
print(a[1]) 
print(a[2]) 
print(a[7]) 
 
Looping Through a String 
for x in "banana": 
  print(x) 
 
String Slicing 
b = "Hello, World!" 
print(b[2:5] 
b = "Hello, World!" 
print(b[:5]) 
b = "Hello, World!" 
print(b[2:]) 
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b = "Hello, World!" 
print(b[-5:-2]) 
print(b[-1]) 
 
Strings Functions 
 
a = "hello, World!" 
print(a.upper())                  #Converts a string into upper case 
print(a.capitalize())             #Converts the first character to upper 
case 
print(a.casefold())             #Converts string into lower case 
print(a.split())              #Splits the string at the specified 
separator, and returns a list 
print(a.lower())              #Converts a string into lower case 
print(a.strip())                  # Returns a trimmed version of the 
string 
                                    #returns "Hello, World!" 
print(a.replace("h", "J"))            #Returns a string where a specified 
value is replaced with a specified value 
print(a.isdigit())                  #Returns True if all characters in the 
string are digits 
print(a.isupper())            #Returns True if all characters in the 
string are upper case 
print(len(a))             #len() function returns the length of a string 
 
String Concatenation 
 
a = "Hello" 
b = "World" 
c = a + b 
print(c) 
a = "Hello" 
b = "World" 
c = a + "     "     + b 
print(c) 
"""we cannot combine strings and numbers""" 
age = 36 
txt = "My name is John, I am " + age  
print(txt) 
 

we can combine strings and numbers by using the format() method! The format() 
method takes the passed arguments, formats them, and places them in the string where 
the placeholders {} 

 
age = 36 
txt = "My name is John, and I am {}" 
print(txt.format(age)) 
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The format() method takes unlimited number of arguments, and are placed into the 
respective placeholders: 
 
You can use index numbers {0} to be sure the arguments are placed in the correct 
placeholders. 
 
quantity = 3 
itemno = 567 
price = 49.95 
myorder = "I want {} pieces of item {} for {} dollars." 
print(myorder.format(quantity, itemno, price)) 
quantity = 3 
itemno = 567 
price = 49.95 
myorder = "I want to pay {2} dollars for {0} pieces of item {1}." 
print(myorder.format(quantity, itemno, price)) 
 

Boolean: Data type with one of the two built-in values, True or False. Boolean 
objects that are equal to True are truthy (true), and those equal to False are falsy 
(false). But non-Boolean objects can be evaluated in Boolean context as well and 
determined to be true or false. It is denoted by the class bool. 
Note – True and False with capital ‘T’ and ‘F’ are valid boolean otherwise python 
will throw an error. 

Booleans represent one of two values: True or False. 
 
print(10 > 9) 
print(10 == 9) 
print(10 < 9) 
print(bool("Hello"))          #Almost any value is evaluated to True if it 
has some sort of content. 
print(bool(15))             #Any string is True, except empty strings. 
print(bool(0))             # Any number is True, except 0. 
print(bool("")) 
print(bool(())) 
print(bool([])) 
print(bool({}))               # Any list, tuple, set, and dictionary are 
True, except empty ones. 
print(bool(False)) 
print(bool(None)) 
 
Python Arrays 

Array in Python can be created by importing array module. array(data_type, 
value_list) is used to create an array with data type and value list specified in its 
arguments.  
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import array as arr 
  
# creating an array with integer type 
a = arr.array('i', [1, 2, 3]) 
# printing original array 
print ("The new created array is : ", end =" ") 
for i in range (0, 3): 
    print (a[i], end =" ") 
print() 
 
Accessing Python Array Elements 
 
import array as arr 
a = arr.array('i', [2, 4, 6, 8]) 
print("First element:", a[0]) 
print("Second element:", a[1]) 
print("Last element:", a[-1]) 
 
Slicing Python Arrays 
 
import array as arr 
numbers_list = [2, 5, 62, 5, 42, 52, 48, 5] 
numbers_array = arr.array('i', numbers_list) 
print(numbers_array[2:5]) # 3rd to 5th 
print(numbers_array[:-5]) # beginning to 4th 
print(numbers_array[5:])  # 6th to end 
print(numbers_array[:])   # beginning to end 
 
Changing and Adding Elements 
 
import array as arr 
numbers = arr.array('i', [1, 2, 3, 5, 7, 10]) 
# changing first element 
numbers[0] = 0     
print(numbers)     # Output: array('i', [0, 2, 3, 5, 7, 10]) 
# changing 3rd to 5th element 
numbers[2:5] = arr.array('i', [4, 6, 8])    
print(numbers)     # Output: array('i', [0, 2, 4, 6, 8, 10]) 
import array as arr 
numbers = arr.array('i', [1, 2, 3]) 
numbers.append(4) 
print(numbers)     # add one item to the array using the append() method 
numbers.extend([5, 6, 7]) 
print(numbers)     # add several items using the extend() method 
import array as arr 
odd = arr.array('i', [1, 3, 5]) 
even = arr.array('i', [2, 4, 6]) 
numbers = arr.array('i')   # concatenate two arrays using + operator 
numbers = odd + even 
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print(numbers) 
import array as arr 
number = arr.array('i', [1, 2, 3, 3, 4]) 
del number[2]  # removing third element 
print(number)  # Output: array('i', [1, 2, 3, 4]) 
del number  # deleting entire array 
print(number)  # Error: array is not defined 
import array as arr 
numbers = arr.array('i', [10, 11, 12, 12, 13]) 
numbers.remove(12)    # remove() method to remove the given item 
print(numbers)    
print(numbers.pop(2))   # pop() method to remove an item at the given 
index 
print(numbers) 

Python Operators 

Operators are special symbols in Python that carry out arithmetic or logical 
computation. The value that the operator operates on is called the operand. 
 
1) Arithmetic operators: Arithmetic operators are used to perform mathematical 
operations like addition, subtraction, multiplication, etc. 
 
+  Add two operands or unary plus x + y+ 2: 
-  Subtract right operand from the left or unary minus    x - y- 2 
*  Multiply two operands  x * y 
/  Divide left operand by the right one (always results into float)   x / 
y 
%  Modulus - remainder of the division of left operand by the right   x % 
y (remainder of x/y) 
// Floor division - division that results into whole number adjusted to 
the left in the number line   x // y 
** Exponent - left operand raised to the power of right   x**y (x to the 
power y) 
""" 
x = 3 
y = 2 
print('x + y =',x+y) 
print('x - y =',x-y) 
print('x * y =',x*y) 
print('x / y =',x/y) 
print('x // y =',x//y) 
print('x ** y =',x**y) 
 
2) Comparison operators: Comparison operators are used to compare values. It 
returns either True or False according to the condition. 
 
**>**  Greater than - True if left operand is greater than the right  x > 
y 
<  Less than - True if left operand is less than the right    x < y 
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== Equal to - True if both operands are equal x == y 
!= Not equal to - True if operands are not equal  x != y 
 
**>=** Greater than or equal to - True if left operand is greater than or 
equal to the right  x >= y 
<= Less than or equal to - True if left operand is less than or equal to 
the right    x <= y 
""" 
x = 5 
y = 10 
print('x > y is',x>y) 
print('x < y is',x<y) 
print('x == y is',x==y) 
print('x != y is',x!=y) 
print('x >= y is',x>=y) 
print('x <= y is',x<=y) 
 
3) Logical operators: Logical operators are the and, or, not operators. 

• and: True if both the operands are true x and y 
• or: True if either of the operands is true x or y 
• not:   True if operand is false (complements the operand) not x 

 
x = True 
y = False 
print('x and y is',x and y)    #true true 
print('x or y is',x or y)       #either true  
print('not x is',not x) 
 
4) Assignment operators: Assignment operators are used in Python to assign 
values to variables. a = 5 is a simple assignment operator that assigns the value 5 on 
the right to the variable a on the left. 
 
**=**         x = 5           x = 5 
 
**+=**      x += 5            x = x + 5 
 
**-=**      x -= 5            x = x - 5 
 
*=     x *= 5          x = x * 5 
 
**/=**      x /= 5            x = x / 5 
a = 21 
b = 10 
c = 0 
c = a + b 
print ("Value of c is ", c) 
c += a 
print ("Value of c is ", c) 
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c *= a 
print ("Value of c is ", c) 

 
c /= a  
print ("Value of c is ", c)  
 
c  = 2 
c %= a 
print ("Value of c is ", c) 
 
c **= a 
print ("Value of c is ", c) 
 
c //= a 
print ("Value of c is ", c) 
 
5) Bitwise Operators: Bitwise operators are used to compare (binary) numbers: 
 

• &  AND    Sets each bit to 1 if both bits are 1 
• |  OR Sets each bit to 1 if one of two bits is 1 
• ^ XOR    Sets each bit to 1 if only one of two bits is 1 
• ~  NOT    Inverts all the bits 

 
a = 10          #1010    0101 
b = 4           #0100 
  
# Print bitwise AND operation 
print("a & b =", a & b)         #0000 
  
# Print bitwise OR operation 
print("a | b =", a | b)       #1110 
  
# Print bitwise NOT operation 
print("~a =", ~a)                #  ~a = ~1010 
                                #    = -(1010 + 1) 
                                #    = -(1011) 
                                #     = -11 (Decimal) 
  
# print bitwise XOR operation 
print("a ^ b =", a ^ b)         # Returns 1 if one of the bits is 1 and 
the other is 0 else returns false. 
 
6) Shift Operators: These operators are used to shift the bits of a number left or 
right thereby multiplying or dividing the number by two respectively. 
 
Bitwise right shift: Shifts the bits of the number to the right and fills 0 on voids 
left( fills 1 in the case of a negative number) as a result. 
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Bitwise left shift: Shifts the bits of the number to the left and fills 0 on voids right 
as a result.  
 
a = 10 
b = -10 
  
# print bitwise right shift operator 
print("a >> 1 =", a >> 1) 
print("b >> 1 =", b >> 1) 
  
a = 5 
b = -10 
  
# print bitwise left shift operator 
print("a << 1 =", a << 1) 
print("b << 1 =", b << 1) 
 

7) Identity operators: is and is not are the identity operators in Python. They are used 
to check if two values (or variables) are located on the same part of the memory.  
 
x1 = 5 
y1 = 5 
x2 = 'Hello' 
y2 = 'Hello' 
x3 = [1,2,3] 
y3 = [1,2,3] 
print(x1 is not y1)     # Output: False 
print(x2 is y2)         # Output: True 
print(x3 is y3)       # Output: False 
 
8) Membership operators: in and not in are the membership operators in Python. 
They are used to test whether a value or variable is found in a sequence (string, list, 
tuple, set and dictionary). 
 
x = 'Hello world' 
y = {1:'a',2:'b'} 
print('H' in x)         # Output: True 
print('hello' not in x)   # Output: True 
print(1 in y)             # Output: True 
print('a' in y)           # Output: False 
 

Functions 

You use functions in programming to bundle a set of instructions that you want to 
use repeatedly. That means that a function is a piece of code written to carry out a 
specified task. 
 
There are three types of functions in Python: 
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•  User-Defined Functions (UDFs), which are functions that users create to help 
them out. 
 
•  Anonymous functions, which are also called **lambda functions** because they 
are not declared with the standard def keyword. 
 
•  Built-in functions, such as help() to ask for help, min() to get the minimum value, 
print() to print an object to the terminal. 
 
Creating a Function 
 
def my_function(): 
  print("Hello from a function") 
 
"""**Calling** **a** **Function** """ 
 
def my_function(): 
  print("Hello from a function") 
 
my_function() 
 
def my_function(fname):                       #A parameter is the variable 
listed inside the parentheses in the function definition. 
  print(fname + " Refsnes") 
 
my_function("Emil")                         #An argument is the value that 
is sent to the function when it is called. 
my_function("Tobias") 
my_function("Linus") 
 
Number of Arguments 
 
def my_function(fname, lname): 
  print(fname + " " + lname) 
 
my_function("Emil", "Refsnes") 
 
def my_function(*kids):                         #do not know how many 
arguments that will be passed into your function, add a * before the 
parameter name in the function definition 
  print("The youngest child is " + kids[2]) 
 
my_function("Emil", "Tobias", "Linus") 
 
def my_function(child3, child2, child1): 
  print("The youngest child is " + child3) 
 
my_function(child1 = "Emil", child2 = "Tobias", child3 = "Linus")           
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#send arguments with the key = value syntax 
 
def my_function(**kid):                       #number of keyword arguments is 
unknown, add a double ** before the parameter name 
  print("His last name is " + kid["lname"]) 
 
my_function(fname = "Tobias", lname = "Refsnes") 
 
Default Parameter Value 
 
def my_function(country = "Norway"): 
  print("I am from " + country) 
 
my_function("Sweden") 
my_function("India") 
my_function()     #If we call the function without argument, it uses the 
default value 
my_function("Brazil") 
 
Passing a List as an Argument 
 
def my_function(food): 
  for x in food: 
    print(x) 
 
fruits = ["apple", "banana", "cherry"] 
 
my_function(fruits) 
 
Return Values 
 
def my_function(x): 
  return 5 * x 
print(my_function(3)) 
print(my_function(5)) 
print(my_function(9)) 
 
Python Lambda 
 
A lambda function is a small anonymous function. A lambda function can take any 
number of arguments, but can only have one expression. 
 
x = lambda a : a + 10 
print(x(5)) 
Max = lambda a, b : a if(a > b) else b            # Example of lambda 
function using if-else 
print(Max(1, 2)) 
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Difference Between Lambda functions and def defined function 
 
def cube(y): 
    return y*y*y 
lambda_cube = lambda y: y*y*y 
print(cube(5)) 
print(lambda_cube(5)) 
 
Python Built-In Functions 
 
all(): The python all() function accepts an iterable object (such as list, dictionary, 
etc.). It returns true if all items in passed iterable are true. Otherwise, it returns 
False. If the iterable object is empty, the all() function returns True. 
 
k = [1, 3, 4, 6]              # all values true 
   print(all(k))     
    
   k = [0, False]                # all values false 
   print(all(k))     
  
   k = [1, 3, 7, 0]            # one false value   
   print(all(k))     
   
   k = [0, False, 5]         ## one true value 
   print(all(k))     
  
   k = []                     # empty iterable  
print(all(k)) 
 
test1 = []   
   print(test1,'is',bool(test1))   
   test1 = [0]   
   print(test1,'is',bool(test1))   
   test1 = 0.0   
   print(test1,'is',bool(test1))   
   test1 = None   
   print(test1,'is',bool(test1))   
   test1 = True   
   print(test1,'is',bool(test1))   
   test1 = 'Easy string'   
print(test1,'is',bool(test1)) 
 
x = 10    
print('Absolute value of -40 is:', abs(x))    #abs() function is used to 
return the absolute value of a number 
floating = -20.83   
print('Absolute value of -20.83 is:', abs(floating))   
y =  bin(x)  #bin() function is used to return the binary representation 
of a specified integer. 
print (y)   
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s = sum([1, 2,4 ])                #sum() function is used to get the sum 
of numbers of an iterable, i.e., list. 
print(s)     
print(float(9))                 # float() function change into float 
number 
print(complex(9))                # complex() function change into complex 
number 
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Data Structures, Control Structures and Loops in Python 

Md. Ashraful Haque  
ICAR-Indian Agricultural Statistics Research Institute, New Delhi - 110 012  

ashraful.haque@icar.gov.in 

Data structures in python: 

Data Structures are the way of organizing, storing, manipulating, and accessing data 
in better way. The data structures enable us to can be access and update data in a more 
efficient manner depending upon the situation. Data Structures are fundamentals of 
any programming language around which a program is built. There are mainly four 
types of built-in data structures in python. Python helps to learn the fundamental of 
these data structures in a simpler way as compared to other programming languages. 
These data structures are- 

• List 
• Tuple 
• Set  
• Dictionary 

1. List Data Structures: 

List are used to store more than one data in single variable. In python lists are flexible 
i.e. it can store multiple data type in a single list. 

The characteristics of Lists Data Structures in python are: 

• Items are indexed (starting from 0) 
• Items are ordered 
• Items are changeable 
• Lists allow duplicate values of items 

Creation of List: Lists are created by placing the comma separated items inside the 
square brackets. 

## creation of lists  

list1 = ["apple", "banana", "cherry"]  

list2 = [1, 5, 7, 9, 3]  

list3 = [True, False, False]  

list4 = [1, 2, 3, "GFG", 2.3]  

list5 = [1,2,3,4,4,] 

Accessing Items from List: Items of the lists can be access by mentioning the index 
or indices inside the square brackets. 

## accessing items  
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list1 = ["apple", "banana", "cherry"]  

list2 = [1, 5, 7, 9, 3, 6, 9, 2, 1, 10] 

x = list1[0]  

print(x)  

y = list2[1:4]  

print(y) 

## new list  

new_list = [1, 2, 3, 'example', 3.132, 10, 30] 

#access all elements  

print(new_list)  

#access index 3 element  

print(new_list[3])  

#access elements from 0 to 1 and exclude 2  

print(new_list[0:2])  

#access elements in reverse  

print(new_list[::-1]) 

Updating the list: Items in the list at particular position can be updated by mentioning 
the values in the left-hand side of the assignment operator. 

list2 = [1, 5, 7, 9, 3, 6, 9, 2, 1, 10]  

list2[2] = 34  

print(list2) 

Remove items: Items in the list at particular position can be deleted by del statement. 

list2 = [1, 5, -12, 9, 3, 6, 9, 2, 1, 10]  

del list2[2] print(list2) 

Some common functions operate on list data structures: 

## append(): adds an items or a list of items in at the end of a list  

list1.append(list2) 

## insert(): adds an items at a particular location of a list  

list1.insert(1,'mango') 

## remove(): deletes an item by its value from a list  

list1.remove('banana') 

## clear(): deletes all the elements from the  

list list1.clear() 

## index(): finds the index of the given element in the list  

list1.index('mango') 

## finds the count of the given element present in the list  

list1.count('mango') 

#sorted(): temporarily sorts the elements of the list  

sorted(list1) 

#sort(): permanantly sorts the elements of the list  

list1.sort(reverse=True) 

Some basic operations on list data structures: 
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## Get number of items in a list  

n = len(list1) 

## Concatenate two lists together  

list_new = list1 + list2  

## check membership of an item in a list 

100 in list2 # (gives true or false) 

2. Tuple Data Structure: 

Tuples are sequence of immutable objects in python. Tuples can store more than one 
datatype in a single instance of tuple. 

The characteristics of Tuple Data Structures in python are: 

• Items are indexed (starting from 0) 
• Items are ordered 
• Items are non-changeable 
• Tuples allow duplicate values for the items 

Creation of tuples: Tuples are created by placing the comma separated items inside 
the round brackets or parenthesis. 

tuple1 = ("apple", "banana", "cherry")  

tuple2 = (1, 5, 7, 9, 3)  

tuple3 = (True, False, False) 

Accessing items from Tuple: Items of the tuple can be access by mentioning the index 
or indices inside the square brackets. 

## accessing items  

tuple1 = ("apple", "banana", "cherry")  

tuple2 = (1, 5, 7, 9, 3, 6, 9, 2, 1, 10)  

x = tuple1[0]  

print(x)  

y = tuple2[1:4]  

print(y) 

Updating the tuple: Items in the tuples can't be changes once the tuple is created. 

tuple2 = (1, 5, 7, 9, 3, 6, 9, 2, 1, 10)  

tuple2[2]= 34 ## will raise an error print(tuple2) 

Remove items: Items in the tuple can't be deleted as tuples are immutable. However, 
del statement can be used to delete whole tuple instead. 

tup = ('physics', 'chemistry', 1997, 2000)  

print(tup)  

del tup 

print(tup) ## will raise an error 

Some basic operations on tuple data structures: 

## Get number of items in a tuple  

n = len(tuple1) 
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tuple_new = tuple1 + tuple2  

## check membership of an item in a tuple 

100 in tuple2 # (gives true or false) 

 

3. Set Data Structure: 

Mathematically, a set is a collection of items in any order. The sets in python are 
typically used for mathematical operations like union, intersection, difference and 
complement etc. 

The characteristics of Set Data Structures in python are: 

• Items are unindexed 
• Items are unordered 
• Items are non-changeable. 
• Sets doesn’t allow duplicate values 

Creation of Sets: Sets are created by placing the comma separated items inside curly 
brackets. 

set1 = {"apple", "banana", "cherry"}  

set2 = {1, 5, 7, 9, 3}  

set3 = {True, False, False} 

Accessing items in Sets: Items in the sets can’t be access by mentioning the index 
number. For accessing the items in the Sets one can use any loop structure. 

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"]  

for d in Days:     

print(d) 

Adding and deleting items: In Sets, a new item can be added using add() function 
and an existing item can be deleted by discard() function. 

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat"])  

Days.add("Sun")  

print(Days)  

Days.discard("Mon")  

print(Days) 

Different set operations: 

Union of Sets: The union operation on two sets produces a new set containing all the 
distinct elements from both the sets. In the below example the element “Wed” is 
present in both the sets. Here, pipe (|) operator is used. 

DaysA = set(["Mon","Tue","Wed"]) 

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])  

AllDays = DaysA|DaysB  

print(AllDays) 
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Intersection of Sets: The intersection operation on two sets produces a new set 
containing only the common elements from both the sets. Here, ampersand (&) 
operator is used. 

DaysA = set(["Mon","Tue","Wed"]) 

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])  

AllDays = DaysA & DaysB  

print(AllDays) 

Difference of Sets: The difference operation on two sets produces a new set 
containing only the elements from the rst set and none from the second set. Here, 
minus (-) operator is used. 

DaysA = set(["Mon","Tue","Wed"]) 

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])  

AllDays = DaysA - DaysB  

print(AllDays) 

Compare Sets: We can check if a given set is a subset or superset of another set. 

DaysA = set(["Mon","Tue","Wed"]) 

DaysB = set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"]) 

SubsetRes = DaysA <= DaysB  

SupersetRes = DaysB >= DaysA  

print(SubsetRes)  

print(SupersetRes) 

4. Dictionary Data Structure: 

Dictionaries are the type of data structure that are used to store data in key:value pair. 
In Dictionary, each key is separated from its value by a colon (:), the items are 
separated by commas, and the whole thing is enclosed in curly braces. 

The characteristics of Dictionaries Data Structures in python are: 

• Items are ordered 
• Items are changeable 
• Dictionary doesn’t allow duplicate values 

Creation of dictionaries: Dictionaries are created by placing the comma separated 
key:values pairs inside curly brackets. 

dictionary1 = {"brand": "Ford", 

"model": "Mustang", 

"year": 1964} 

x = dictionary1 ["model"]  

print(x) 

Accessing items: Items ca be access by mentioning the key name inside the square 
bracket. 

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}  

print ("dict['Name']: ", dict['Name']) 



 Python for Artificial Intelligence in Agriculture 

 
 

32 

print ("dict['Age']: ", dict['Age']) 

Updating Dictionary: One can update a dictionary by adding a new entry or a key-
value pair, modifying an existing entry, or deleting an existing entry. 

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}  

dict['Age'] = 8;  

# update existing entry  

dict['School'] = "DPS School"  

# Add new entry 

print ("dict['Age']: ", dict['Age']) 

print ("dict['School']: ", dict['School']) 

Delete Dictionary Elements: One can either remove individual dictionary elements 
or clear the entire contents of a dictionary. 

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}  

del dict['Name'] # remove entry with key 'Name'  

dict.clear() # remove all entries in dict  

del dict  # delete entire dictionary 

print ("dict['Age']: ", dict['Age']) 

print ("dict['School']: ", dict['School']) 

Control Structures in Python: 

There is mainly one control structure that is if...else . The if...else structures are used 
to implement the logical conditions of the program and allow the program to branch 
based on the evaluation of an expression. 

General syntax of if...else : 

if expression :      

    statement 1 

    statement 2 

    ... 

    statement n else:  

    statement 1      

    statement 2      

    ... 

statement always executed 

N.B. Indentation in the control and loop structures are very crucial in case of python 
programming language. 

## examples of if..else 
## if statement value = 5 

threshold= 4 

print("value is", value, "threshold is ",threshold)  

if value > threshold :      

         print(value, "is bigger than ", threshold) 

## if..else statement a = 330 b = 200 if b > a: 
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         print("b is greater than a") else:   print("error") 

Nested control structures: The if..else structures can be used in nested manner by 
using elif statement. 

## nested if.. statements  

### if ... elif ... else ... 

a = 5  

b = 4  

print("a = ", a, "and b = ", b)  

if a > b : 

    print(a, " is greater than ", b)  

elif a == b : 

    print(a, " equals ", b)  

else :      

    print(a, " is less than ", b) 

Loop Structures in Python: 

In python generally two types of loop structures are used: while loop and for loop. 

1. while loop: 

With the ‘while’ loop, a set of statements can be executed repeatedly long as a 
condition is true . For the loop to terminate, there has to be some termoiation criteria 
mentioned in the code which will potentially change the condition and stop the 
iteration. 

## Simple example  

i=1  

while i < 6:    

      print(i)    

      i = i + 1 

## sum of n numbers using a while loop  

n = 10  

cur_sum = 0  

i = 1  

while  i <= n : 

     cur_sum = cur_sum + i 

     i = i + 1 

print("The sum of the numbers from 1 to", n, "is ", cur_sum) 

Points to note: 

• Here, the conditional clause (i <= n) in the while statement can be anything which 
would return a boolean value of either True or False upon execution. 

• Initially i has been set to 1 (before the start of the loop) and therefore the condition 
is True. 

• The clause can be made more complex by using parentheses, and and or operators 
amongst others 
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• The statements after the while clause are only executed if the condition evaluates 
as True. 

• Within the statements after the while clause there should be something which 
potentially will make the condition evaluate as False next time around. If not the 
loop will never end. 

• In this case the last statement in the loop changes the value of i which is part of 
the condition clause, so hopefully the loop will end. 

2. for loop: 

A for loop is used for iterating over a sequence (that is either a list, a tuple, a 
dictionary, a set, or a string) for executing a set of statements. The difference 
between while and for loop is that in for loop we know that at the outset how often 
the statements in the loop will be executed, we don’t have to rely on a variable being 
changed within the looping statements as in while loop. 

General syntax of for loop: 

for variable_name in some_sequence : 
    statement1 
    statement2 
    ... 
    statementn 

## simple example 
for i in [1,2,3] : 
    print(i) 
print("\nExample 1\n") 
fruits = ["apple", "banana", "cherry"] 
for x in fruits: 
  print(x) 
 
print("\nExample 2\n") 
for x in "banana": 
  print(x) 
print("\nExample 3\n") 
for name in ["Tom", 42, 3.142] : 
    print(name) 
print("\nExample 4\n") 
for i in range(10) : 
    print(i) 
print("\nExample 5\n") 
longString = "The quick brown fox jumped over the lazy sleeping do" 
for word in longString.split() : 
    print(word) 
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Introduction to Functions 

In Python, the function is a block of code defined with a name. We use functions 

whenever we need to perform the same task multiple times without writing the same 

code again. It can take arguments and returns the value. 

Python has a DRY principle like other programming languages. DRY stands for Don’t 

Repeat Yourself. Consider a scenario where we need to do some action/task many 

times. We can define that action only once using a function and call that function 

whenever required to do the same activity. 

Function improves efficiency and reduces errors because of the reusability of a code. 

Once we create a function, we can call it anywhere and anytime. The benefit of using 

a function is reusability and modularity. 

Types of Functions 

Python support two types of functions 

1. Built-in function 

2. User-defined function 

Built-in function 

The functions which are come along with Python itself are called a built-in 

function or predefined function. Some of them are listed below. 

range(),  type(), input(), eval() etc. 

 

Example: Python range() function generates the immutable sequence of 

numbers starting from the given start integer to the stop integer. 
for i in range(1, 10): 

    print(i, end=' ') 

# Output 1 2 3 4 5 6 7 8 9 

 

User-defined function 

Functions which are created by programmer explicitly according to the requirement 

are called a user-defined function. 



 Python for Artificial Intelligence in Agriculture 

 36 

 

Creating a Function 

Use the following steps to define a function in Python. 

• Use the def keyword with the function name to define a function. 

• Next, pass the number of parameters as per your requirement. (Optional). 

• Next, define the function body with a block of code. This block of code is 

nothing but the action you want to perform. 

In Python, no need to specify curly braces for the function body. The 

only indentation is essential to separate code blocks. Otherwise, you will get an error. 

 

Syntax of creating a function 
def function_name(parameter1, parameter2): 

       # function body     

       # write some action 

return value 

 

Here, 

• function_name: Function name is the name of the function. We can give any 

name to function. 

• parameter: Parameter is the value passed to the function. We can pass any 

number of parameters. Function body uses the parameter’s value to perform 

an action 

• function_body: The function body is a block of code that performs some task. 

This block of code is nothing but the action you wanted to accomplish. 

• return value: Return value is the output of the function. 

Note: While defining a function, we use two keywords, def (mandatory) 

and return (optional). 

 

Creating a function without any parameters 
# function 

def message(): 

    print("Welcome participants to ICAR-IASRI") 

 

# call function using its name 

message() 
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Creating a function with parameters 

Let’s create a function that takes two parameters and displays their values. 

In this example, we are creating function with two parameters ‘ name’ and ‘age’. 

 
# function 

def training_func(name, training_name): 

    print("Hello", name, "Welcome to ICAR-IASRI") 

    print("Your training title is", training_name) 

 

# call function 

training_func ('XYZ', 'Python') 

 

Creating a function with parameters and return value 

Functions can return a value. The return value is the output of the function. Use the 

return keyword to return value from a function. 

 
# function 

def calculator(a, b): 

    add = a + b 

    # return the addition 

    return add 

 

# call function 

# take return value in variable 

res = calculator(20, 5) 

 

print("Addition :", res) 

# Output Addition : 25 

 
Calling a function 
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Once we defined a function or finalized structure, we can call that function by using 

its name. We can also call that function from another function or program by 

importing it. 

To call a function, use the name of the function with the parenthesis, and if the 

function accepts parameters, then pass those parameters in the parenthesis. 

 
# function 
def even_odd(n): 

    # check number is even or odd 

    if n % 2 == 0: 

        print('Even number') 

    else: 

        print('Odd Number') 

 

# calling function by its name 

even_odd(19) 

# Output Odd Number 

 
Calling a function of a module 

You can take advantage of the built-in module and use the functions defined in it. For 

example, Python has a random module that is used for generating random numbers 

and data. It has various functions to create different types of random data. 

Let’s see how to use functions defined in any module. 

• First, we need to use the import statement to import a specific function from a 
module. 

• Next, we can call that function by its name. 
 
# import randint function 

from random import randint 

 

# call randint function to get random number 

print(randint(10, 20)) 

# Output 14 

 
Docstrings 

In Python, the documentation string is also called a docstring. It is a descriptive text 

(like a comment) written by a programmer to let others know what block of code does. 

We write docstring in source code and define it immediately after module, class, 

function, or method definition 

It is being declared using triple single quotes (''' ''') or triple-double quote(""" """). 
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We can access docstring using doc attribute (__doc__) for any object 

like list, tuple, dict, and user-defined function, etc. 

 

Single-Line Docstring 

The single-line docstring is a docstring that fits in one line. We can use the triple 

single or triple-double quotes to define it. The Opening and closing quotes need to be 

the same. By convention, we should use to use the triple-double quotes to define 

docstring. 

 
def factorial(x): 

    """This function returns the factorial of a given number.""" 

    return x 

# access doc string 

print(factorial.__doc__) 

 
When you use the help function to get the information of any function, it returns the 
docstring. 
 
# pass function name to help() function 
print(help(factorial)) 

 
Help on function factorial in module main: 
factorial(x) 

     This function returns the factorial of a given number. 

None 

 
Multi-Line Docstring 

A multi-line Docstrings is the same single-line Docstrings, but it is followed by a 

single blank line with the descriptive text. 

The general format of writing a multi-line Docstring is as follows: 

Example 
 
def any_fun(parameter1): 

"""               

   Description of function 

                  

   Arguments:    

   parameter1(int):Description of parameter1 

                  

   Returns:       

   int value      

"""               

print(any_fun.__doc__) 
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Output 
Description of function 

 

Arguments 

parameter1(int):Description of parameter1 

 

Returns: 

int value 

 
Return Value From a Function 

In Python, to return value from the function, a return statement is used. It returns the 

value of the expression following the returns keyword. 

Syntax of return statement 

 
def fun(): 

    statement-1 

    statement-2 

    statement-3 

    .           

    .           

    return [expression] 

 
The return value is nothing but a outcome of function. 

• The return statement ends the function execution. 

• For a function, it is not mandatory to return a value. 

• If a return statement is used without any expression, then the None is returned. 

• The return statement should be inside of the function block. 

 
def is_even(list1): 

    even_num = [] 

    for n in list1: 

        if n % 2 == 0: 

            even_num.append(n) 

    # return a list 

    return even_num 

 

# Pass list to the function 

even_num = is_even([2, 3, 42, 51, 62, 70, 5, 9]) 

print("Even numbers are:", even_num) 

 
Output 
Even numbers are: [2, 42, 62, 70] 
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Return Multiple Values 

You can also return multiple values from a function. Use the return statement by 

separating each expression by a comma. 

 
Example: – 

In this example, we are returning three values from a function. We will also see how 

to process or read multiple return values in our code. 

 
def arithmetic(num1, num2): 

    add = num1 + num2 

    sub = num1 - num2 

    multiply = num1 * num2 

    division = num1 / num2 

    # return four values 

    return add, sub, multiply, division 

 

# read four return values in four variables 

a, b, c, d = arithmetic(10, 2) 

 

print("Addition: ", a) 

print("Subtraction: ", b) 

print("Multiplication: ", c) 

print("Division: ", d) 

 
Scope and Lifetime of Variables 

When we define a function with variables, then those variables’ scope is limited to 

that function. In Python, the scope of a variable is an area where a variable is declared. 

It is called the variable’s local scope. 

We cannot access the local variables from outside of the function. Because the scope 

is local, those variables are not visible from the outside of the function. 

Note: The inner function does have access to the outer function’s local scope. 

When we are executing a function, the life of the variables is up to running time. Once 

we return from the function, those variables get destroyed. So function does no need 

to remember the value of a variable from its previous call. 

The following code shows the scope of a variable inside a function. 

 
Example 
global_lang = 'DataScience' 

 
def var_scope_test(): 

    local_lang = 'Python' 
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    print(local_lang) 

 

var_scope_test() 

# Output 'Python' 

 

# outside of function 

print(global_lang) 

# Output 'DataScience' 

 

# NameError: name 'local_lang' is not defined 
print(local_lang) 

 
In the above example, we print the local and global variable values from outside of 

the function. The global variable is accessible with its name global_lang. 

But when we try to access the local variable with its name local_lang, we got a 

NameError, because the local variable is not accessible from outside of the function. 

 

Example 
def function1(): 

    # local variable 

    loc_var = 888 

    print("Value is :", loc_var) 

 

def function2(): 

 

    print("Value is :", loc_var) 

 

function1() 

function2() 

 
Output 
Value is : 888 

print("Value is :", loc_var) # gives error, 

NameError: name 'loc_var' is not defined 

 
Global Variable in function 

A Global variable is a variable that is declared outside of the function. The scope of a 

global variable is broad. It is accessible in all functions of the same module. 

 
Example 
global_var = 999 

 

def function1(): 

    print("Value in 1nd function :", global_var) 

 

def function2(): 
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    print("Value in 2nd function :", global_var) 

 

function1() 

function2() 

 
Output 
Value in 1nd function : 999 

Value in 2nd function : 999 
 
Global Keyword in Function 

In Python, global is the keyword used to access the actual global variable from outside 

the function. we use the global keyword for two purposes: 

1. To declare a global variable inside the function. 

2. Declaring a variable as global, which makes it available to function to perform 

the modification. 

Let’s see what happens when we don’t use global keyword to access the global 

variable in the function 

 
# Global variable 
global_var = 5 
 
def function1(): 
    print("Value in 1st function :", global_var) 
 
def function2(): 
    # Modify global variable 
    # function will treat it as a local variable 
    global_var = 555 
    print("Value in 2nd function :", global_var) 
 
def function3(): 
    print("Value in 3rd function :", global_var) 
 
function1() 
function2() 
function3() 
 
Output 
Value in 1st function : 5 
Value in 2nd function : 555 
Value in 3rd function : 5 
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As you can see, function2() treated global_var as a new variable (local variable). To 

solve such issues or access/modify global variables inside a function, we use 

the global keyword. 

 

# Global variable 
x = 5 
 
# defining 1st function 
def function1(): 

    print("Value in 1st function :", x) 

 

# defining 2nd function 

def function2(): 

    # Modify global variable using global keyword 

    global x 

    x = 555 

    print("Value in 2nd function :", x) 

 

# defining 3rd function 

def function3(): 

    print("Value in 3rd function :", x) 

 

function1() 

function2() 

function3() 

 
Output 
Value in 1st function : 5 

Value in 2nd function : 555 

Value in 3rd function : 555 

 
Python Function Arguments 

The argument is a value, a variable, or an object that we pass to a function or method 

call. In Python, there are four types of arguments allowed. 

1. Positional arguments 

2. keyword arguments 

3. Default arguments 

4. Variable-length arguments 

 
Positional Arguments 

Positional arguments are arguments that are pass to function in proper positional 

order. That is, the 1st positional argument needs to be 1st when the function is called. 
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The 2nd positional argument needs to be 2nd when the function is called, etc. See the 

following example for more understanding. 

 
Example 
def add(a, b): 
    print(a - b) 
 

add(50, 10) 

# Output 40 

add(10, 50) 

# Output -40 

 
Keyword Arguments 

A keyword argument is an argument value, passed to function preceded by the 

variable name and an equals sign. 

Example 
def message(name, surname): 

    print("Hello", name, surname) 

 

message(name="A", surname="B") 

message(surname="C", name="D") 

 
Output 
Hello A B 

Hello C D 

 
In keyword arguments order of argument is not matter, but the number of arguments 

must match. Otherwise, we will get an error. 

While using keyword and positional argument simultaneously, we need to pass 1st 

arguments as positional arguments and then keyword arguments. Otherwise, we will 

get Syntax Error. See the following example. 

Example 
 
def message(first_nm, last_nm): 

    print("Hello..!", first_nm, last_nm) 

 

# correct use 

message("A", "B") 

message("A", last_nm="B") 

 

# Error 

# SyntaxError: positional argument follows keyword argument 

message(first_nm="A", "B") 
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Default Arguments 

Default arguments take the default value during the function call if we do not pass 

them. We can assign a default value to an argument in function definition using 

the = assignment operator. 

 
Example 
 
# function with default argument 

def message(name="Guest"): 

    print("Hello", name) 

 

# calling function with argument 

message("John") 

 

# calling function without argument 

message() 

 

Output 

Hello John 

Hello Guest 

 
Variable-length Arguments 

In Python, sometimes, there is a situation where we need to pass multiple numbers of 

arguments to the function. Such types of arguments are called variable-length 

arguments. We can declare a variable-length argument with the * (asterisk) symbol. 

 
def fun(*var): 

    function body 

 
We can pass any number of arguments to this function. Internally all these values are 

represented in the form of a tuple. 

 
Example 
 
def addition(*numbers): 

    total = 0 

    for no in numbers: 

        total = total + no 

    print("Sum is:", total) 

 

# 0 arguments 

addition() 

 

# 5 arguments 
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addition(10, 5, 2, 5, 4) 

 

# 3 arguments 

addition(78, 7, 2.5) 

 

Output 

Sum is: 0 

Sum is: 26 

Sum is: 87.5 

 
Recursive Function 

A recursive function is a function that calls itself, again and again. 

Consider, calculating the factorial of a number is a repetitive activity, in that case, we 

can call a function again and again, which calculates factorial. 

 
def factorial(no): 

    if no == 0: 

        return 1 

    else: 

        return no * factorial(no - 1) 

 

print("factorial of a number is:", factorial(8)) 

 

Output 

factorial of a number is: 40320 

 

The advantages of the recursive function are: 

1. By using recursive, we can reduce the length of the code. 

2. The readability of code improves due to code reduction. 

3. Useful for solving a complex problem 

The disadvantage of the recursive function: 

1. The recursive function takes more memory and time for execution. 

2. Debugging is not easy for the recursive function. 

 
Python Anonymous/Lambda Function 

Sometimes we need to declare a function without any name. The nameless property 

function is called an anonymous function or lambda function. 

The reason behind the using anonymous function is for instant use, that is, one-time 

usage. Normal function is declared using the def function. Whereas the anonymous 

function is declared using the lambda keyword. 
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A Python lambda function is a single expression. But, in a lambda body, we can 

expand with expressions over multiple lines using parentheses or a multiline string. 

ex : lambda n:n+n 

Syntax of lambda function: 

lambda: argument_list:expression 

When we define a function using the lambda keyword, the code is very concise so 

that there is more readability in the code. A lambda function can have any number of 

arguments but return only one value after expression evaluation. 

Let’s see an example to print even numbers without a lambda function and with 

a lambda function. See the difference in line of code as well as readability of code. 

Example 1: Program for even numbers without lambda function 
def even_numbers(nums): 

    even_list = [] 

    for n in nums: 

        if n % 2 == 0: 

            even_list.append(n) 

    return even_list 

 

num_list = [10, 5, 12, 78, 6, 1, 7, 9] 

ans = even_numbers(num_list) 

print("Even numbers are:", ans) 

 

Output 

Even numbers are: [10, 12, 78, 6] 

 

Example 2: Program for even number with a lambda function 
l = [10, 5, 12, 78, 6, 1, 7, 9] 
even_nos = list(filter(lambda x: x % 2 == 0, l)) 

print("Even numbers are: ", even_nos) 

 
Output 

Even numbers are: [10, 12, 78, 6] 

 
We are not required to write explicitly return statements in the lambda function 

because the lambda internally returns expression value. 

Lambda functions are more useful when we pass a function as an argument to another 

function. We can also use the lambda function with built-in functions such 

as filter, map, reduce because this function requires another function as an argument. 

 
filter() function in Python 
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In Python, the filter() function is used to return the filtered value. We use this function 

to filter values based on some conditions. 

Syntax of filter() function: 
filter(funtion, sequence) 
where, 

• function – Function argument is responsible for performing condition 

checking. 

• sequence – Sequence argument can be anything like list, tuple, string 

Example: lambda function with  filter() 
l = [-10, 5, 12, -78, 6, -1, -7, 9] 

positive_nos = list(filter(lambda x: x > 0, l)) 

print("Positive numbers are: ", positive_nos) 

 

Output 

Positive numbers are: [5, 12, 6, 9] 

 
 
Python Modules 
In Python, modules refer to the Python file, which contains Python code like Python 

statements, classes, functions, variables, etc. A file with Python code is defined with 

extension.py 

For example: In Test.py, where the test is the module name. 

In Python, large code is divided into small modules. The benefit of modules is, it 

provides a way to share reusable functions. 

Types of modules 

In Python, there are two types of modules. 

1. Built-in Modules 

2. User-defined Modules 

Built-in modules 

Built-in modules come with default Python installation. One of Python’s most 

significant advantages is its rich library support that contains lots of built-in modules. 

Hence, it provides a lot of reusable code. 

Some commonly used Python built-in modules are datetime, os, math, sys, random, 

etc. 

User-defined modules 
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The modules which the user defines or create are called a user-defined module. We 

can create our own module, which contains classes, functions, variables, etc., as per 

our requirements. 

How to import modules? 

In Python, the import statement is used to import the whole module. Also, we can 

import specific classes and functions from a module. 

import module name. 
 
When the interpreter finds an import statement, it imports the module presented in a 

search path. The module is loaded only once, even we import multiple times. 

To import modules in Python, we use the Python import keyword. With the help of 

the import keyword, both the built-in and user-defined modules are imported. Let’s 

see an example of importing a math module. 

 
import math 

# use math module functions 

print(math.sqrt(5)) 

# Output 2.23606797749979 

 
Import multiple modules 

If we want to use more than one module, then we can import multiple modules. This 

is the simplest form of import statement that we already used in the above example. 

Syntax of import statement: 
import module1,module2,.. moduleN 

 
Example 
# Import two modules 

import math, random 

 

print(math.factorial(5)) 

print(random.randint(10, 20)) 

 

Output 

120 

18 

 
Import only specific classes or functions from a module 

To import particular classes or functions, we can use the from...import statement. It is 

an alternate way to import. Using this way, we can import individual attributes and 

methods directly into the program. 
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In this way, we are not required to use the module name. See the following example. 

Syntax of from...import statement: 
from <module_name> import <name(s)> 

Example 
# import only factorial function from math module 

from math import factorial 

print(factorial(5)) 

 

Output 

120 

 

Import with renaming a module 

If we want to use the module with a different name, we can 

use from..import…as statement. 

It is also possible to import a particular method and use that method with a different 

name. It is called aliasing. Afterward, we can use that name in the entire program. 

Syntax of from..import ..as keyword: 
from <module_name> import <name> as <alternative_name> 
 
Example 1: Import a module by renaming it 
import random as rand 

print(rand.randrange(10, 20, 2)) 

 

Output 

16 

 
Example 2: Import a method by renaming it 
# rename randint as random_number 

from random import randint as random_number 

 

# Gives any random number from range(10, 50) 

print(random_number(10, 50)) 

 

Output 

32 

 
Import all names 

If we need to import all functions and attributes of a specific module, then instead of 

writing all function names and attribute names, we can import all using an asterisk *. 

Syntax of import * statement: 
import * 

 
Example 
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from math import * 

print(pow(4,2)) 

print(factorial(5)) 

 

print(pi*3) 

print(sqrt(100)) 

 

Output 

16.0 

120 

9.42477796076938 

10.0 

 
Create Module 

In Python, to create a module, write Python code in the file, and save that file with 

the.py extension. Here our module is created. 

Example 
def my_func(): 

    print("Welcome to ICAR-IASRI") 

Output 

Welcome to ICAR-IASRI 

 
Variables in Module 

In Python, the module contains Python code like classes, functions, methods, but it 

also has variables. A variable can list, tuple, dict, etc. 

Let’s see this with an example: 

First, create a Python module with the name test_module.py and write the below code 

in that file. 

Example 
cities_list = ['Mumbai', 'Delhi', 'Bangalore', 'Karnataka', 'Hyderabad'] 

 
Now, create a Python file with the name test_file.py, write the below code and import 
the above module test_module.py in that file. See the following code. 
 
import test_module 

# access first city 

city = test_module.cities_list[1] 

print("Accessing 1st city:", city) 

 

# Get all cities 

cities = test_module.cities_list 

print("Accessing All cities :", cities) 

 

When we execute this test_file.py, the variable of test_module.py is accessible using 
the dot(.)operator. 
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Output 

Accessing 1st city: Delhi 

Accessing All cities : ['Mumbai', 'Delhi', 'Bangalore', 'Karnataka', 

'Hyderabad'] 

 
File Handling in Python 
File handling is an important part of any web application. Python too supports file 

handling and allows users to handle files i.e., to read and write files, along with many 

other file handling options, to operate on files. Python treats files differently as text 

or binary and this is important. Each line of code includes a sequence of characters 

and they form a text file. Each line of a file is terminated with a special character, 

called the EOL or End of Line characters like comma {,} or newline character. It ends 

the current line and tells the interpreter a new one has begun.  

 

Types of File 

• Binary File: The binary files are used to store binary data such as images, 

video files, audio files, etc. 

• Text File: Text file usually we use to store character data. For example, test.txt 

 

Binary files in Python 

Most of the files that we see in our computer system are called binary files. 

Example: 

1. Document files: .pdf, .doc, .xls etc. 

2. Image files: .png, .jpg, .gif, .bmp etc. 

3. Video files: .mp4, .3gp, .mkv, .avi etc. 

4. Audio files: .mp3, .wav, .mka, .aac etc. 

5. Database files: .mdb, .accde, .frm, .sqlite etc. 

6. Archive files: .zip, .rar, .iso, .7z etc. 

7. Executable files: .exe, .dll, .class etc. 

 

Text files in Python 

Text files don’t have any specific encoding and it can be opened in normal text editor 

itself. 

Example: 
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• Web standards: html, XML, CSS, JSON etc. 

• Source code: c, app, js, py, java etc. 

• Documents: txt, tex, RTF etc. 

• Tabular data: csv, tsv etc. 

• Configuration: ini, cfg, reg etc. 

 

Python File Handling Operations 

Most importantly there are 4 types of operations that can be handled by Python on 

files: 

• Open 

• Read 

• Write 

• Close 

Other operations include: 

• Rename 

• Delete 

 

Python Create and Open a File 

Python has an in-built function called open() to open a file. It takes a minimum of one 

argument as mentioned in the below syntax. The open method returns a file object 

which is used to access the write, read and other in-built methods. 

Here, file_name is the name of the file or the location of the file that you want to open, 

and file_name should have the file extension included as well. Which means 

in test.txt – the term test is the name of the file and .txt is the extension of the file. 

The mode in the open function syntax will tell Python as what operation you want to 

do on a file. 

• ‘r’ – Read Mode: Read mode is used only to read data from the file. 

• ‘w’ – Write Mode: This mode is used when you want to write data into the 

file or modify it. Remember write mode overwrites the data present in the file. 

• ‘a’ – Append Mode: Append mode is used to append data to the file. 

Remember data will be appended at the end of the file pointer. 

• ‘r+’ – Read or Write Mode: This mode is used when we want to write or 

read the data from the same file. 
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• ‘a+’ – Append or Read Mode: This mode is used when we want to read data 

from the file or append the data into the same file. 

Note: The above-mentioned modes are for opening, reading or writing text files only. 

While using binary files, we have to use the same modes with the letter ‘b’ at the end. 

So that Python can understand that we are interacting with binary files. 

• ‘wb’ – Open a file for write only mode in the binary format. 

• ‘rb’ – Open a file for the read-only mode in the binary format. 

• ‘ab’ – Open a file for appending only mode in the binary format. 

• ‘rb+’ – Open a file for read and write only mode in the binary format. 

• ‘ab+’ – Open a file for appending and read-only mode in the binary format. 

 

Example 1: 
fo=open("/Users/akshaydheeraj/Desktop/Python_Practice/test.txt","r+") 

In the above example, we are opening the file named ‘test.txt’ present at the location 

‘C:/Documents/Python/’ and we are opening the same file in a read-write mode which 

gives us more flexibility. 

Let’s create the file named test.txt with the sample text as 
Hello everyone! Welcome to ICAR-IASRI 

Good morning. 

How are you? 

 

Python Read From File 

In order to read a file in python, we must open the file in read mode. 

There are three ways in which we can read the files in python. 
• read([n]) 

• readline([n]) 

• readlines() 

Here, n is the number of bytes to be read. 

 

Here we are opening the file test.txt in a read-only mode and are reading only the first 

5 characters of the file using the fo.read(5) method. 
print(fo.read(5)) 

Output:  

Hello 
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Here we have not provided any argument inside the read() function. Hence it will 

read all the content present inside the file. 
print(fo.read()) 

Output:  

Hello everyone! Welcome to ICAR-IASRI 

Good morning. 

How are you? 

 

The readline() method reads the lines of the file from the beginning, i.e., if we use 

the readline() method two times, then we can get the first two lines of the file. 
print(fo.readline()) 

Output: 

Hello everyone! Welcome to ICAR-IASRI 

 

Python provides also the readlines() method which is used for the reading lines. It 

returns the list of the lines till the end of file(EOF) is reached. 
print(fo.readlines()) 

Output: 
['Hello everyone! Welcome to ICAR-IASRI\n', 'Good morning.\n', 'How are 

you?\n', '\n'] 

 

Python Write to File 

In order to write data into a file, we must open the file in write mode. 

We need to be very careful while writing data into the file as it overwrites the content 

present inside the file that you are writing, and all the previous data will be erased. 

 

We have two methods for writing data into a file as shown below. 

• write(string) 

• writelines(list) 

Example 1: 
my_file = open(“C:/Documents/Python/test.txt”, “w”) 

my_file.write(“Hello World”) 
The above code writes the String ‘Hello World’ into the ‘test.txt’ file. 

Example 2: 
my_file = open(“C:/Documents/Python/test.txt”, “w”) 
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my_file.write(“Hello World\n”) 

my_file.write(“Hello Python”) 
The first line will be ‘Hello World’ and as we have mentioned \n character, the cursor 

will move to the next line of the file and then write ‘Hello Python’. 

Remember if we don’t mention \n character, then the data will be written continuously 

in the text file like ‘Hello WorldHelloPython’ 
fruits = [“Apple\n”, “Orange\n”, “Grapes\n”, “Watermelon”] 

my_file = open(“C:/Documents/Python/test.txt”, “w”) 

my_file.writelines(fruits) 

 

Python Append to File 

To append data into a file we must open the file in ‘a+’ mode so that we will have 

access to both the append as well as write modes. 

Example 1: 
my_file = open(“C:/Documents/Python/test.txt”, “a+”) 

my_file.write (“Strawberry”) 
The above code appends the string ‘Apple’ at the end of the ‘test.txt’ file. 

 

Python Close File 

In order to close a file, we must first open the file. In python, we have an in-built 

method called close() to close the file which is opened. 

Whenever you open a file, it is important to close it, especially, with write method. 

Because if we don’t call the close function after the write method then whatever data 

we have written to a file will not be saved into the file. 

 

Example 1: 
my_file = open(“C:/Documents/Python/test.txt”, “r”) 

print(my_file.read()) 

my_file.close() 

 

Python Rename or Delete File 

Python provides us with an “os” module which has some in-built methods that would 

help us in performing the file operations such as renaming and deleting the file. 

In order to use this module, first of all, we need to import the “os” module in our 

program and then call the related methods. 
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rename() method: 

This rename() method accepts two arguments i.e. the current file name and the new 

file name. 

Syntax: 
os.rename(current_file_name, new_file_name) 

 

Example 1: 
import os 

os.rename(“test.txt”, “test1.txt”) 
Here ‘test.txt’ is the current file name and ‘test1.txt’ is the new file name. 

You can specify the location as well as shown in the below example. 

Example 2: 
import os 

os.rename(“C:/Documents/Python/test.txt”, “C:/Documents/Python/test1.txt”) 
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OOPs concepts and Exception handling 

Madhu  
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Introduction: 

Procedural programming is about writing procedures or functions that perform 
operations on the data, while object-oriented programming is about creating objects 
that contain both data and functions. 

Object-Oriented Paradigm 

1. Emphasis is on data rather than procedure.  

2. Programs are divided into objects.  

3. Data Structures are designed such that they Characterize the objects.  

4. Methods that operate on the data of an object are tied together in the data 
structure.  

5. Data is hidden and cannot be accessed by external functions.  

6. Objects may communicate with each other through methods. 

Difference between Procedural and Object oriented programming 

Procedural Oriented Programming Object Oriented Programming 

Program is divided into smaller parts 
called functions. 

Program is divided into smaller parts 
called objects. 

It follows top down approach. It follows bottom up approach. 

There is no access specifier in it. It have access specifiers like public, 
private, protected. 

Adding new data and function is not 
easy. 

Adding new data and function is easy. 

Functions are more important than data. Data is more important than Functions. 

It is based on unreal world.  It is based on real world. 

It does not have proper way of hiding 
data hence it is less secure.  

It provides data hiding hence it is more 
secure. 

C, FORTRAN, Pascal, Basic etc. C++, Java, Python, C## etc. 

OOPs Concepts: 

1. Object 
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2. Class 

3. Inheritance 

4. Polymorphism 

5. Abstraction 

6. Encapsulation 

 

Object 

An object is a real-world entity that has attributes, behavior, and properties. It is 
referred to as an instance of the class. It contains member functions, variables that we 
have defined in the class. It occupies space in the memory. Different objects have 
different states or attributes, and behaviors. 

Class 

A class is a blueprint or template of an object. It is a user-defined data type. Inside a 
class, we define variables, constants, member functions, and other functionality. It 
binds data and functions together in a single unit. It does not consume memory at run 
time. Note that classes are not considered as a data structure. It is a logical entity. Note 
that a class can exist without an object but vice-versa is not possible. 

The following figure best illustrates the class and object in OOP. 
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Abstraction 

The concept allows us to hide the implementation from the user but shows only 
essential information to the user. Using the concept developer can easily make 
changes and added over time. 

 

Encapsulation 

Encapsulation is a mechanism that allows us to bind data and functions of a class into 
an entity. It protects data and functions from outside interference and misuse. 
Therefore, it also provides security. A class is the best example of encapsulation. 

 

Inheritance 

The concept allows us to inherit or acquire the properties of an existing class (parent 
class) into a newly created class (child class). It is known as inheritance. It provides 
code reusability. 

 

Polymorphism 

The word polymorphism is derived from the two words i.e. poly and morphism. 
Poly means many and morphism means forms. It allows us to create methods with the 
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same name but different method signatures. It allows the developer to create clean, 
sensible, readable, and resilient code. 

 

A person plays an employee role in the office, father and husband role in the home. 

Benefits of OOP 

o Modular, scalable, extensible, reusable, and maintainable. 

o It models the complex problem in a simple structure. 

o Object can be used across the program. 

o Code can be reused. 

o We can easily modify, append code without affecting the other code blocs. 

o Provides security through encapsulation and data hiding features. 

o Beneficial to collaborative development in which a large project is divided 
into groups. 

o Debugging is easy. 

Limitations of OOP 

o Requires intensive testing processes. 

o The size of the programs created using this approach may become larger than 
the programs written using the procedure-oriented programming approach. 

o Software developed using this approach requires a substantial amount of pre-
work and planning. 

o OOP code is difficult to understand if you do not have the corresponding class 
documentation. 

o In certain scenarios, these programs can consume a large amount of memory. 

o Not suitable for small problems. 

o Takes more time to solve problems. 

Python class:   

• Classes are created by keyword class. 

• Attributes are the variables that belong to a class. 

• Attributes are always public and can be accessed using the dot (.) operator. 
Eg.: Myclass.Myattribute 
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Create a Class 

To create a class, use the keyword class: 

class MyClass: 
  x = 5 

Class Objects 

An Object is an instance of a Class. A class is like a blueprint while an instance is a 
copy of the class with actual values. 

Suppose a class is a prototype of a building. A building contains all the details about 
the floor, rooms, doors, windows, etc. we can make as many buildings as we want, 
based on these details. Hence, the building can be seen as a class, and we can create 
as many objects of this class. 

Consider the following example to create a class Employee which contains two fields 
as Employee id, and name. The class also contains a function display(), which is used 
to display the information of the Employee. 

class Employee:     

    id = 10    

    name = "Devansh"     

    def display (self):     

        print(self.id,self.name)     

Here, the self is used as a reference variable, which refers to the current class object. 
It is always the first argument in the function definition. However, using self is 
optional in the function call. 

Create Object 

Now we can use the class named MyClass to create objects: 

class MyClass: 
  x = 5 
p1 = MyClass() 

print(p1.x) 

output 

5 

Declaring an object –  

class Dog:      

    attr1 = "mammal" 
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    attr2 = "dog"  

    def fun(self): 

        print("I'm a", self.attr1) 

        print("I'm a", self.attr2)  

Rodger = Dog()  

print(Rodger.attr1) 

Rodger.fun() 

Output: - 

mammal 

I'm a mammal 

I'm a dog 

Constructors: 

A constructor is a special method in a class used to create and initialize an object of a 
class. A constructor is a unique function that gets called automatically when an object 
is created of a class. The main purpose of a constructor is to initialize or assign values 
to the data members of that class. It cannot return any value other than none.  

Syntax of Python Constructor 

def __init__(self): 

 # initializations 

init is one of the reserved functions in Python. In Object Oriented Programming, it is 
known as a constructor. Self is a reference to the current instance of the class. It is 
created and passed automatically/implicitly to the __init__() when the constructor is 
called. 

Rules of Python Constructor 

• It starts with the def keyword, like all other functions in Python. 

• It is followed by the word init, which is prefixed and suffixed with double 
underscores with a pair of brackets, i.e., __init__(). 

• It takes an argument called self, assigning values to the variables. 

Types of Constructors  

1. Parameterized Constructor 

2. Non-Parameterized Constructor 

3. Default Constructor 
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1. Parameterized Constructor in Python 

When the constructor accepts arguments along with self, it is known as parameterized 
constructor. These arguments can be used inside the class to assign the values to the 
data members. 

class Family:   

    # Constructor - parameterized   

    members=5 

    def __init__(self, count):   

        print("This is parametrized constructor")   

        self.members = count 

    def show(self):   

        print("No. of members is", self.members)   

         

object = Family(10)   

object.show()    

Output: 

This is parameterized constructor 

No. of members is 10 

2. Non-Parameterized Constructor in Python 

When the constructor doesn't accept any arguments from the object and has only one 
argument, self, in the constructor, it is known as a non-parameterized constructor. 
This can be used to re-assign a value inside the constructor. 

class Fruits: 

    favourite = "Apple" 

 

    # non-parameterized constructor 

    def __init__(self): 

        self.favourite = "Orange" 

 

    # a method 

    def show(self): 

        print(self.favourite) 
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# creating an object of the class 

obj = Fruits() 

 

# calling the instance method using the object obj 

obj.show() 

Output: 

Orange 

 

3. Default Constructor in Python 

When you do not write the constructor in the class created, Python itself creates a 
constructor during the compilation of the program. It generates an empty constructor 
that has no code in it.  

Example 

class Assignments: 

    check= "not done" 

    # a method 

    def is_done(self): 

        print(self.check) 

 

# creating an object of the class 

obj = Assignments() 

 

# calling the instance method using the object obj 

obj.is_done() 

Output 

not done 

More than One Constructor in Single class 

class example: 

    def __init__(self): 

        print("One") 

    def __init__(self): 

        print("Two") 
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    def __init__(self): 

        print("Three") 

e = example() 

Output: 

Three 

Note: The constructor overloading is not allowed in Python. 

Inheritance: 

Inheritance provides code reusability to the program because we can use an existing 
class to create a new class instead of creating it from scratch. In inheritance, the child 
class acquires the properties and can access all the data members and functions 
defined in the parent class. A child class can also provide its specific implementation 
to the functions of the parent class.  

Types of Inheritance: - 

 

In python, a derived class can inherit base class by just mentioning the base in the 
bracket after the derived class name. Consider the following syntax to inherit a base 
class into the derived class. 

Syntax 

class derived-class(base class):   
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  <class-suite>    

A class can inherit multiple classes by mentioning all of them inside the bracket. 
Consider the following syntax. 

Syntax 

class derive-
class(<base class 1>, <base class 2>, ..... <base class n>):   

    <class - suite>    

Single Inheritance:- 

class Animal:   

   def speak(self):   

      print("Animal Speaking")   

#child class Dog inherits the base class Animal   

class Dog(Animal):   

   def bark(self):   

        print("dog barking")   

d = Dog()   

d.bark()   

d.speak()   

Output: 

dog barking 

Animal Speaking 

Multi-Level inheritance 

class Animal:   

  def speak(self):   

    print("Animal Speaking")   

#The child class Dog inherits the base class Animal   

class Dog(Animal):   

   def bark(self):   

       print("dog barking")   

#The child class Dogchild inherits another child class Dog   

class DogChild(Dog):   

   def eat(self):   

     print("Eating bread...")   
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d = DogChild()   

d.bark()   

d.speak()   

d.eat()   

Output: 

dog barking 

Animal Speaking 

Eating bread... 

Multiple inheritance 

# creating class for father 

class Dad(): 

  # writing a method for parent class 1 

  def singing(self): 

    print("Dad sings well") 

     

# creating a class for mother 

class Mom(): 

  # method for parent class 2 

  def coding(self): 

    print("Mom codes well") 

 

# creating derived class 

class Child(Dad, Mom): 

  def playing(self): 

    print("Kid loves to play") 

 

# creating object of the new derived class 

child = Child() 

# calling methods of parent classes and derived class 

child.singing() 

child.coding() 

child.playing() 
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Output: 

Dad sings well 

Mom codes well 

Kid loves to play 

Hierarchical inheritance 

# Base class 

class Parent: 

    def func1(self): 

        print("This function is in parent class.") 

# Derived class1 

class Child1(Parent): 

    def func2(self): 

        print("This function is in child 1.") 

# Derivied class2 

class Child2(Parent): 

    def func3(self): 

        print("This function is in child 2.") 

 object1 = Child1() 

object2 = Child2() 

object1.func1() 

object1.func2() 

object2.func1() 

object2.func3() 

Output:- 

This function is in parent class. 

This function is in child 1. 

This function is in parent class. 

This function is in child 2. 
 

Hybrid Inheritance :- 

class School: 

    def func1(self): 
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        print("This function is in school.") 

class Student1(School): 

    def func2(self): 

        print("This function is in student 1. ") 

class Student2(School): 

    def func3(self): 

        print("This function is in student 2.") 

class Student3(Student1, School): 

    def func4(self): 

        print("This function is in student 3.") 

object = Student3() 

object.func1() 

object.func2() 

Output: 

This function is in school. 

This function is in student 1. 

Method Overriding in Python 

Method overriding is an ability of any object-oriented programming language that 
allows a subclass or child class to provide a specific implementation of a method that 
is already provided by one of its super-classes or parent classes. When a method in a 
subclass has the same name, same parameters or signature and same return type(or 
sub-type) as a method in its super-class, then the method in the subclass is said 
to override the method in the super-class. 
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The version of a method that is executed will be determined by the object that is used 
to invoke it. If an object of a parent class is used to invoke the method, then the version 
in the parent class will be executed, but if an object of the subclass is used to invoke 
the method, then the version in the child class will be executed.  

Example: 

class Parent(): 

    # Constructor 

    def __init__(self): 

        self.value = "Inside Parent" 

    # Parent's show method 

    def show(self): 

        print(self.value)     

# Defining child class 

class Child(Parent): 

    # Constructor 

    def __init__(self): 

        self.value = "Inside Child" 

    # Child's show method 

    def show(self): 

        print(self.value) 

obj1 = Parent() 

obj2 = Child() 

obj1.show() 

obj2.show() 

Output: 

Inside Parent 

Inside Child 

Encapsulation 

Encapsulation in Python describes the concept of bundling data and methods within 
a single unit. So, for example, when you create a class, it means you are implementing 
encapsulation. A class is an example of encapsulation as it binds all the data members 
(instance variables) and methods into a single unit. 

Implement encapsulation using a class 
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class Employee: 

    # constructor 

    def __init__(self, name, salary, project): 

        # data members 

        self.name = name 

        self.salary = salary 

        self.project = project 

    # method to display employee's details 

    def show(self): 

        # accessing public data member 

        print("Name: ", self.name, 'Salary:', self.salary) 

    # method 

    def work(self): 

        print(self.name, 'is working on', self.project) 

# creating object of a class 

emp = Employee('Jessa', 8000, 'NLP') 

# calling public method of the class 

emp.show() 

emp.work() 

Output: 

Name:  Jessa Salary: 8000 

Jessa is working on NLP 
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Using encapsulation, we can hide an object’s internal representation from the 
outside. This is called information hiding. 

Access Modifiers in Python 

• Public Member: Accessible anywhere from outside class. 

• Private Member: Accessible within the class 

• Protected Member: Accessible within the class and its sub-classes 

 

Public Member 

Public data members are accessible within and outside of a class. All member 
variables of the class are by default public. 

class Employee: 

    # constructor 

    def __init__(self, name, salary): 

        # public data members 

        self.name = name 

        self.salary = salary 

    # public instance methods 

    def show(self): 

        # accessing public data member 

        print("Name: ", self.name, 'Salary:', self.salary) 

# creating object of a class 

emp = Employee('Jessa', 10000) 

# accessing public data members 

print("Name: ", emp.name, 'Salary:', emp.salary)     

# calling public method of the class 

emp.show() 
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Output:- 

Name:  Jessa Salary: 10000 

Name:  Jessa Salary: 10000 

Private Member 

We can protect variables in the class by marking them private. To define a private 
variable, add two underscores as a prefix at the start of a variable name. 

Private members are accessible only within the class, and we can’t access them 
directly from the class objects. 

Example: 

class Employee: 

    # constructor 

    def __init__(self, name, salary): 

        # public data member 

        self.name = name 

        # private member 

        self.__salary = salary 

# creating object of a class 

emp = Employee('Jessa', 10000) 

# accessing private data members 

print('Salary:', emp.__salary) 

Output: 

AttributeError: 'Employee' object has no attribute '__salary' 

We can access private members from outside of a class using the following two 
approaches: 

• Create public method to access private members 

• Use name mangling 

Public method to access private members 

Example: Access Private member outside of a class using an instance method 

class Employee: 

  # constructor 

 def __init__(self, name, salary): 

# public data member 
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  self.name = name 

   # private member 

    self.__salary = salary 

# public instance methods 

   def show(self): 

    # private members are accessible from a class 

  print("Name: ", self.name, 'Salary:', self.__salary) 

# creating object of a class 

emp = Employee('Jessa', 10000) 

# calling public method of the class 

emp.show() 

Output: 

Name: Jessa Salary: 10000 

Name Mangling to access private members 

We can directly access private and protected variables from outside of a class through 
name mangling. The name mangling is created on an identifier by adding two leading 
underscores and one trailing underscore, like this _classname__dataMember, 
where classname is the current class, and data member is the private variable name. 

Access private member 

class Employee: 

    # constructor 

    def __init__(self, name, salary): 

        # public data member 

        self.name = name 

        # private member 

        self.__salary = salary 

# creating object of a class 

emp = Employee('Jessa', 10000) 

print('Name:', emp.name) 

# direct access to private member using name mangling 

print('Salary:', emp._Employee__salary)    

 

Output 
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Name: Jessa 

Salary: 10000 

Protected Member 

Protected members are accessible within the class and also available to its sub-classes. 
To define a protected member, prefix the member name with a single underscore _. 
Protected data members are used when you implement inheritance and want to allow 
data members access to only child classes. 

# base class 

class Company: 

    def __init__(self): 

        # Protected member 

        self._project = "NLP"    

# child class 

class Employee(Company): 

    def __init__(self, name): 

        self.name = name    

        Company.__init__(self) 

    def show(self): 

        print("Employee name :", self.name) 

        # Accessing protected member in child class 

        print("Working on project :", self._project) 

c = Employee("Jessa") 

c.show() 

# Direct access protected data member 

print('Project:', c._project)    

Output 

Employee name : Jessa 

Working on project : NLP 

Project: NLP 
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Polymorphism 

Polymorphism is made from 2 words – ‘poly‘ and ‘morphs.’ The word ‘poly’ means 
‘many’ and ‘morphs’ means ‘many forms.’ Polymorphism means having multiple 
forms. 

Polymorphism may be used in one of the following ways in an object-oriented language: 

• Overloading of operators 

• Class Polymorphism in Python 

• Method overriding, also referred to as Run time Polymorphism 

• Method overloading, also known as Compile time Polymorphism 

 

Polymorphism is supported in Python via method overriding and operator overloading. 
However, Python does not support method overloading. 

Polymorphism in Python through Operator Overloading 

Operator overloading is another type of polymorphism in which the same operator 
performs various operations depending on the operands. Python allows for operator 
overloading. 

1. Polymorphism in + operator: 

We already know that the ‘+’ operator is frequently used in Python programs. The + 
operator behaves differently depending on the type of object on which it is used. 

a = 10 

b = 20 

print('Addition of 2 numbers:', a + b) 

str1 = 'Hello ' 

str2 = 'Python' 

print('Concatenation of 2 strings:', str1 + str2) 

list1 = [1, 2, 3] 

list2 = ['A', 'B'] 

print('Concatenation of 2 lists:', list1 + list2) 

 Output                   

Addition of 2 numbers: 30 

Concatenation of 2 strings: Hello Python 

Concatenation of 2 lists: [1, 2, 3, 'A', 'B'] 
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2. Polymorphism in * operator: 

The * operator is used to multiply 2 numbers if the data elements are numeric values. If 
one of the data types is a string, and the other is numeric, the string is printed that many 
times as that of the 2nd variable in the multiplication process. 

a = 10 

b = 5 

print('Multiplication of 2 numbers:', a * b) 

num = 3 

mystr = 'Python' 

print('Multiplication of string:', num * mystr) 

Output                     

Multiplication of 2 numbers: 50 

Multiplication of string: PythonPythonPython 

Function Polymorphism in Python 

There are certain Python functions that can be used with different data types. The len() 
function is one example of such a function. Python allows it to work with a wide range 
of data types. The built-in function len() estimates an object’s length based on its type. 
If an object is a string, it returns the number of characters; or if an object is a list, it 
returns the number of elements in the list. If the object is a dictionary, it gives the total 
number of keys found in the dictionary. 

       

mystr = 'Programming' 

print('Length of string:', len(mystr)) 

mylist = [1, 2, 3, 4, 5] 
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print('Length of list:', len(mylist)) 

mydict = {1: 'One', 2: 'Two'} 

print('Length of dict:', len(mydict))        

Output                     

Length of string: 11 

Length of list: 5 

Length of dict: 2 

Class Polymorphism in Python 

Because Python allows various classes to have methods with the same name, we can 
leverage the concept of polymorphism when constructing class methods. We may then 
generalize calling these methods by not caring about the object we’re working with. 
Then we can write a for loop that iterates through a tuple of items.             

class Tiger(): 

    def nature(self): 

        print('I am a Tiger and I am dangerous.') 

    def color(self): 

        print('Tigers are orange with black strips') 

class Elephant(): 

    def nature(self): 

        print('I am an Elephant and I am calm and harmless') 

    def color(self): 

        print('Elephants are grayish black') 

obj1 = Tiger() 

obj2 = Elephant() 

for animal in (obj1, obj2): # creating a loop to iterate through the obj1 
and obj2 

    animal.nature() 

    animal.color()                 

Output 

I am a Tiger and I am dangerous. 

Tigers are orange with black strips 

I am an Elephant and I am calm and harmless 

Elephants are grayish black 
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Polymorphism and Inheritance (Method Overriding) 

In Python, child classes, like other programming languages, inherit methods and 
attributes from the parent class. Method Overriding is the process of redefining certain 
methods and attributes to fit the child class. This is especially handy when the method 
inherited from the parent class does not exactly fit the child class. In such circumstances, 
the method is re-implemented in the child class. Method Overriding refers to the 
technique of re-implementing a method in a child class. 

class Vehicle: 

    def __init__(self, brand, model, price): 

        self.brand = brand 

        self.model = model 

        self.price = price 

    def show(self): 

        print('Details:', self.brand, self.model, 'Price:', self.price) 

    def max_speed(self): 

        print('Vehicle max speed is 160') 

    def gear_system(self): 

        print('Vehicle has 6 shifter gearbox') 

# inherit from vehicle class 

class Car(Vehicle): 

    def max_speed(self): 

        print('Car max speed is 260') 

    def gear_system(self): 

        print('Car has Automatic Transmission') 

# Car Object 

car = Car('Audi', 'R8', 9000000) 

car.show() 

# call methods from Car class 

car.max_speed() 

car.gear_system() 

# Vehicle Object 

vehicle = Vehicle('Nissan', 'Magnite', 550000) 
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vehicle.show() 

# call method from a Vehicle class 

vehicle.max_speed() 

vehicle.gear_system()            

Output                     

Details: Audi R8 Price: 9000000 

Car max speed is 260 

Car has Automatic Transmission 

Details: Nissan Magnite Price: 550000 

Vehicle max speed is 160 

Vehicle has 6 shifter gearbox                

Compile-Time Polymorphism (Method Overloading) 

Method overloading occurs when a class contains many methods with the same name. 
The types and amount of arguments passed by these overloaded methods vary. Python 
does not support method overloading or compile-time polymorphism. If there are 
multiple methods with the same name in a class or Python script, the method specified 
in the latter one will override the earlier one. 

Exception Handling 

Error in Python can be of two types i.e. Syntax errors and Exceptions. Errors are the 
problems in a program due to which the program will stop the execution. On the 
other hand, exceptions are raised when some internal events occur which changes 
the normal flow of the program.  

Difference between Syntax Error and Exceptions 

Syntax Error: As the name suggests this error is caused by the wrong syntax in the 
code. It leads to the termination of the program.  

amount = 10000 

if(amount > 2999) 

print("You are eligible to purchase Dsa Self Paced") 

Exceptions: Exceptions are raised when the program is syntactically correct, but 
the code resulted in an error. This error does not stop the execution of the program, 
however, it changes the normal flow of the program. 

divide_by_zero = 7 / 0 
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Python Logical Errors (Exceptions) 

Errors that occur at runtime (after passing the syntax test) are 
called exceptions or logical errors. 

For instance, they occur when we 

• try to open a file(for reading) that does not exist (FileNotFoundError) 

• try to divide a number by zero (ZeroDivisionError) 

• try to import a module that does not exist (ImportError) and so on. 

Whenever these types of runtime errors occur, Python creates an exception object. If 
not handled properly, it prints a traceback to that error along with some details about 
why that error occurred. 

Python Built-in Exceptions 

Illegal operations can raise exceptions. There are plenty of built-in exceptions in 
Python that are raised when corresponding errors occur. 

We can view all the built-in exceptions using the built-in local() function as follows: 

print(dir(locals()['__builtins__'])) 

Python Exception Handling 

Python try...except Block: The try...except block is used to handle exceptions in 
Python. Here's the syntax of try...except block: 

try: 

    # code that may cause exception 

except: 

    # code to run when exception occurs 

Here, we have placed the code that might generate an exception inside the try block. 
Every try block is followed by an except block. 

When an exception occurs, it is caught by the except block. The except block cannot 
be used without the try block. 

try: 

    numerator = 10 

    denominator = 0 

    result = numerator/denominator 

    print(result) 

except: 

    print("Error: Denominator cannot be 0.") 
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Output:  

Error: Denominator cannot be 0.  

Catching Specific Exceptions  

For each try block, there can be zero or more except blocks. Multiple except blocks 
allow us to handle each exception differently. The argument type of each except block 
indicates the type of exception that can be handled by it. For example, 

try:     

    even_numbers = [2,4,6,8] 

    print(even_numbers[5]) 

except ZeroDivisionError: 

    print("Denominator cannot be 0.")     

except IndexError: 

    print("Index Out of Bound.") 

 Output: 

Index Out of Bound  

Python try with else clause: In some situations, we might want to run a certain block 
of code if the code block inside try runs without any errors. For these cases, you can 
use the optional else keyword with the try statement. 

# program to print the reciprocal of even numbers 

try: 

    num = int(input("Enter a number: ")) 

    assert num % 2 == 0 

except: 

    print("Not an even number!") 

else: 

    reciprocal = 1/num 

    print(reciprocal) 

Output: 

Enter a number: 2 

0.5 

Python try...finally 



 Python for Artificial Intelligence in Agriculture 

 
 

87 

In Python, the finally block is always executed no matter whether there is an 
exception or not. The finally block is optional. And, for each try block, there can be 
only one finally block. 

try: 

    numerator = 10 

    denominator = 0 

    result = numerator/denominator 

    print(result) 

except: 

    print("Error: Denominator cannot be 0.") 

    finally: 

    print("This is finally block.") 

Output: 

Error: Denominator cannot be 0. 

This is finally block. 

Python Custom Exceptions 

Defining Custom Exceptions 

In Python, we can define custom exceptions by creating a new class that is derived 
from the built-in Exception class. 

The syntax to define custom exceptions, 

class CustomError(Exception):    ... 

    pass 

try: 

   ... 

except CustomError: 

    ... 

Here, CustomError is a user-defined error which inherits from the Exception class. 

Note: When we are developing a large Python program, it is a good practice to place 
all the user-defined exceptions that our program raises in a separate file. 

• Many standard modules define their exceptions separately 
as exceptions.py or errors.py (generally but not always). 

Python User-Defined Exception 

class InvalidAgeException(Exception): 
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    "Raised when the input value is less than 18" 

    pass 

# you need to guess this number 

number = 18 

try: 

    input_num = int(input("Enter a number: ")) 

    if input_num < number: 

        raise InvalidAgeException 

    else: 

        print("Eligible to Vote") 

        except InvalidAgeException: 

    print("Exception occurred: Invalid Age") 

Output 

If the user input input_num is greater than 18, 

Enter a number: 45 

Eligible to Vote 

If the user input input_num is smaller than 18, 

Enter a number: 14 

Exception occurred: Invalid Age 

 

 

 

 

 

 

 

 

 

 

 

 



 Python for Artificial Intelligence in Agriculture 

 89 

Data Handling and Visualization using NumPy, Pandas, Matplotlib 
and Seaborn 

Sanchita Naha  

ICAR-Indian Agricultural Statistics Research Institute, New Delhi - 110 012 

sanchita.naha@icar.gov.in 

Introduction: 

Python offers many software packages for smooth data handling required for 

deploying Machine Learning or Deep Learning projects. Most important and very 

frequently used packages of them are NumPy and Pandas for data handling in array 

or tabular format and Matplotlib for data visualization. 

Let us start with the NumPy library first. NumPy stands for Numerical Python. It is a 

library consisting of functions to handle multidimensional array objects and a 

collection of routines for processing arrays. NumPy was created in 2005 by Travis 

Oliphant. It is an open-source project, it can be used freely. NumPy array objects are 

50x faster than traditional Python lists. Using NumPy, mathematical and logical 

operations on arrays can be performed. This tutorial explains the code for declaration 

and manipulation of multidimensional arrays and its contents using NumPy. To install 

NumPy in local system use the following code in Python editor. 

pip install numpy as np  

After installation, run the following code: 

import numpy as np 

print(np.__version__) 

Declare a one-dimensional array with the following code: 

import numpy as np 

arr = np.array([1, 2, 3, 4, 5]) 

print(arr)   

print(type(arr)) 

Datatype of an array: 

print(arr.dtype) 

Create arrays of float and string type: 

arr_float = np.array([10.2,23.0,68.5,98.7,5.0])  

print(arr_float) 

print(arr_float.dtype) 
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arr_string = np.array(['ramayanas','b','c','d','e']) 

print(arr_string) 

arr_string.dtype 

Declare array of zeroes and ones: 

arr = np.zeros(5) 

arr = np.zeros([2,3]) arr 

arr = np.ones(5) arr 

Dimensions in Array:  

0-D Arrays: 0-D arrays, or Scalars, are the elements in an array 

import numpy as np 

arr = np.array(42) 

print(arr) 

I-D Array: An array that has 0-D arrays as its elements is called uni-dimensional or 

1-D array. These are the most common and basic arrays. 

import numpy as np 

arr = np.array([1, 2, 3, 4, 5]) 

print(arr) 

2-D Arrays: An array that has 1-D arrays as its elements is called a 2-D array. These 

are often used to represent matrix or 2nd order tensors. 

arr = np.array([[1, 2, 3], [4, 5, 6]]) 

print(arr) 

3-D arrays: An array that has 2-D arrays (matrices) as its elements is called 3-D 

array. These are often used to represent a 3rd order tensor. 

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) 

print(arr) 

NumPy Arrays provides the ndim attribute that returns an integer that tells us how 

many dimensions the array have. 

arr_0D = np.array(42) 

arr_1D = np.array([1, 2, 3, 4, 5]) 

arr_2D = np.array([[1, 2, 3], [4, 5, 6]]) 

arr_3D = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) 

print('Dimension of arr_oD is: ',arr_0D.ndim) 

print('Dimension of arr_oD is: ',arr_1D.ndim) 

print('Dimension of arr_oD is: ',arr_2D.ndim) 

print('Dimension of arr_oD is: ',arr_3D.ndim) 
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Higher Dimensional Arrays An array can have any number of dimensions. When the 

array is created, you can define the number of dimensions by using the ndmi 

argument. 

arr = np.array([1, 2, 3, 4], ndmin=5) 

print(arr) 

print('number of dimensions :', arr.ndim) 

Indexing of an array:  

Access Array Elements: Array indexing is the same as accessing an array element. 

You can access an array element by referring to its index number. The indexes in 

NumPy arrays start with 0, meaning that the first element has index 0, and the second 

has index 1 etc. 

arr = np.array([1, 2, 3, 4]) 

print(arr[0]) 

Get third and fourth elements from the following array and add them. 

arr = np.array([1, 2, 3, 4]) 

print(arr[2] + arr[3]) 

Access 2-D Arrays: To access elements from 2-D arrays we can use comma separated 

integers representing the dimension and the index of the element. Think of 2-D arrays 

like a table with rows and columns, where the dimension represents the row and the 

index represents the column. 

# Access the element on the first row, second column: 

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]]) 

print('2nd element on 1st row: ', arr[0, 1]) 

#Access the element on the 2nd row, 5th column: 

print('5th element on 2nd row: ', arr[1, 4]) 

Access 3-D Arrays: To access elements from 3-D arrays we can use comma 

separated integers representing the dimensions and the index of the element. 

arr_3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) 

print(arr_3d.ndim) 

print(arr_3d[0, 1, 2]) 

# Printing size (total number of elements) of array 

print("Size of array: ", arr.size) 
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The first number represents the first dimension, which contains two arrays: [[1, 2, 3], 

[4, 5, 6]] and: [[7, 8, 9], [10, 11, 12]] Since we selected 0, we are left with the first 

array: [[1, 2, 3], [4, 5, 6]] 

The second number represents the second dimension, which also contains two arrays: 

[1, 2, 3] and: [4, 5, 6] Since we selected 1, we are left with the second array: [4, 5, 6] 

The third number represents the third dimension, which contains three values: 4 5 6 

Since we selected 2, we end up with the third value: 6 

Negative Indexing Use negative indexing to access an array from the end. 

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]]) 

print('Last element from 2nd dim: ', arr[1, -1]) 

NumPy Array Slicing: Slicing in python means taking elements from one given index 

to another given index. We pass slice instead of index like this: [start:end].We can 

also define the step, like this:[start:end:step]. If we don't pass start its considered 0 If 

we don't pass end its considered length of array in that dimension. If we don't pass 

step its considered 1 Note: The result includes the start index, but excludes the end 

index. 

arr = np.array([1, 2, 3, 4, 5, 6, 7]) 

print(arr[1:5]) 

Negative Slicing: Use the minus operator to refer to an index from the end. 

import numpy as np 

arr = np.array([1, 2, 3, 4, 5, 6, 7]) 

print(arr[-3:-1]) 

STEP Use the step value to determine the step of the slicing: 

arr = np.array([1, 2, 3, 4, 5, 6, 7]) 

print(arr[1:5:2]) 

#Return every other element from the entire array: 

arr = np.array([1, 2, 3, 4, 5, 6, 7]) 

print(arr[::2]) 

Slicing 2-D Arrays From the second element, slice elements from index 1 to index 4 

(not included): 

arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) 

print(arr[1, 1:4]) 

Checking the Data Type of an Array The NumPy array object has a property called 

dtype that returns the data type of the array: 
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arr = np.array([1, 2, 3, 4]) 

print(arr.dtype) 

arr1 = np.array(['apple', 'banana', 'cherry']) 

print(arr1.dtype) 

Creating Arrays With a Defined Data Type We use the array() function to create 

arrays, this function can take an optional argument: dtype that allows us to define 

the expected data type of the array elements: 

arr = np.array([1, 2, 3, 4], dtype='S') 

print(arr) 

print(arr.dtype) 

arr = np.array([1, 2, 3, 4], dtype='i4') 

print(arr) 

print(arr.dtype) 

Converting Data Type on Existing Arrays The best way to change the data type of an 

existing array, is to make a copy of the array with the astype() method. The astype() 

function creates a copy of the array, and allows you to specify the data type as a 

parameter. The data type can be specified using a string, like 'f' for float, 'i' for integer 

etc. or you can use the data type directly like float for float and int for integer. 

arr = np.array([1.1, 2.1, 3.1]) 

newarr = arr.astype('i') 

print(newarr) 

print(newarr.dtype) 

arr = np.array([1, 0, 3]) 

newarr = arr.astype(bool) 

print(newarr) 

print(newarr.dtype) 

 

Shape of an Array The shape of an array is the number of elements in each 

dimension. Get the Shape of an Array NumPy arrays have an attribute called shape 

that returns a tuple with each index having the number of corresponding elements. 

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) 

print(arr.shape) 
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#Create an array with 5 dimensions using ndmin using a vector with val
ues 1,2,3,4 and verify that last dimension has value 4: 

arr = np.array([1, 2, 3, 4], ndmin=5) 

print(arr) 

print('shape of array :', arr.shape) 

Reshaping arrays Reshaping means changing the shape of an array. The shape of an 

array is the number of elements in each dimension. By reshaping we can add or 

remove dimensions or change number of elements in each dimension. 

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) 

print(arr.shape) 

newarr = arr.reshape(4, 3) 

print(newarr) 

 

Reshape From 1-D to 3-D: 

#Convert the following 1-D array with 12 elements into a 3-D array. 

#The outermost dimension will have 2 arrays that contains 3 arrays, ea
ch with 2 elements: 

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) 

print(arr) 

newarr = arr.reshape(2, 3, 2) 

print(newarr) 

newarr1 = arr.reshape(-1, 1, 2) 

print(newarr1) 

 

Can We Reshape Into any Shape? Yes, if the elements required for reshaping are equal 

in both shapes. We can reshape an 8 elements 1D array into 4 elements in 2 rows 2D 

array but we cannot reshape it into a 3-elements 3 rows 2D array as that would require 

3x3 = 9 elements. Note: We cannot pass -1 to more than one dimension. 

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) 

newarr = arr.reshape(2, 2, -1) 

print(newarr) 

 

Note: We can not pass -1 to more than one dimension. 
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arr = np.array([[1, 2, 3], [4, 5, 6]]) 

newarr = arr.reshape(-1) 

print(newarr) 

 

Array Iteration: 

arr = np.array([[1, 2, 3], [4, 5, 6]]) 

for x in arr: 

  for y in x: 

    print(y) 

Iterating on Each Scalar Element In basic for loops, iterating through each scalar of 

an array we need to use n for loops which can be difficult to write for arrays with very 

high dimensionality. 

arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) 

for x in np.nditer(arr): 

  print(x) 

Searching Arrays You can search an array for a certain value, and return the indexes 

that get a match. To search an array, use the where() method. 

arr = np.array([1, 2, 3, 4, 5, 4, 4]) 

x = np.where(arr == 4) 

print(x) 

 

Addition, Subtraction, Division of elements of Matrix: 

import numpy 

  

# initializing matrices 

x = numpy.array([[1, 2], [4, 5]]) 

y = numpy.array([[7, 8], [9, 10]]) 

  

print(x) 

print(y) 

  

# using add() to add matrices 



 Python for Artificial Intelligence in Agriculture 

 96 

print ("The element wise addition of matrix is : ") 

print (numpy.add(x,y)) 

  

# using subtract() to subtract matrices 

print ("The element wise subtraction of matrix is : ") 

print (numpy.subtract(x,y)) 

  

# using divide() to divide matrices 

print ("The element wise division of matrix is : ") 

print (numpy.divide(x,y)) 

 

Array Multiplication: 

import numpy 

  

# initializing matrices 

x = numpy.array([[1, 2], [4, 5]]) 

y = numpy.array([[7, 8], [9, 10]]) 

  

# using multiply() to multiply matrices element wise 

print ("The element wise multiplication of matrix is : ") 

print (numpy.multiply(x,y)) 

  

# using dot() to multiply matrices 

print ("The product of matrices is : ") 

print (numpy.dot(x,y)) 

 

Matrix transpose: 

print ("The transpose of given matrix is : ") 

print (x.T) 

 

Matrix Multiplication: 
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# creating two matrices 

p = [[1, 2], [2, 3]] 

q = [[4, 5], [6, 7]] 

print("Matrix p :") 

print(p) 

print("Matrix q :") 

print(q) 

   

# computing product 

result = np.dot(p, q) 

   

# printing the result 

print("The matrix multiplication is :") 

print(result) 

 

The numpy.linspace() function returns number spaces evenly at a specified interval. 

Similar to numpy.arange() function but instead of step it uses sample number 

# np.linspace(start, stop, num=50, endpoint=True, retstep=False, 
dtype=None, axis=0) 

#start = starting value; stop = end value; endpoint = true means 
include the last sample 

# retstep = true ; stepping between samples a = 
np.linspace(1,10,10,retstep=True) 

a = np.linspace(1,10,10,endpoint = False,retstep=True) a 

#np.arange([start, ]stop, [step, ], dtype=None) 

# starting number, ending position (excluding this value), step = 
spacing; by default it is set to 1 

np.arange(1,100,9) 

Generation of random numbers: 

### Random Number 

## random.randint(low, high=None, size=None, dtype=int) 

## Return random integers from low (inclusive) to high (exclusive) 
np.random.seed(10) 
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print(np.random.randint(100)) print(np.random.randint(100,1000,6)) 
print(np.random.randint(10,30,[5,4])) 

Pandas is an open-source high-performance, easy-to-use Python library for data 

analysis. In this tutorial, working with Data Frame object has been illustrated. Install 

pandas as the following: 

pip install pandas 

For demonstration of pandas we have used two freely available dataset e.g., Iris.csv 

and titanic.csv. 

#load Iris dataset 

import pandas as pd 

df = pd.read_csv('Iris.csv') 

print(df.head()) 

 

#load titanic dataset 

import pandas as pd 

data = pd.read_csv('titanic.csv')  

print(data.head()) 

Pandas is a Python library used for working with data sets. It has functions for 

analyzing, cleaning, exploring, and manipulating data. The name "Pandas" has a 

reference to both "Panel Data", and "Python Data Analysis", was created by Wes 

McKinney in 2008. Pandas allows us to analyze big data and make conclusions based 

on statistical theories. Pandas can clean messy data sets and make them readable and 

relevant which is the most important requirement in data science. Pandas gives you 

answers about the data. Like: Is there a correlation between two or more columns? 

What is average value? Max value? Min value? Using Pandas, it is possible to delete 

rows that are not relevant, or contains wrong values, like empty or NULL values. This 

is called cleaning the data.  

Create a dataframe with dictionary data structure: 

import pandas as pd 

mydataset = { 

  'cars': ["BMW", "Volvo", "Ford"], 

  'passings': [3, 7, 2] 

} 
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myvar = pd.DataFrame(mydataset) 

print(myvar) 

Pandas as pd Pandas is usually imported under the pd alias. alias: In Python alias are 

an alternate name for referring to the same thing. 

print(pd.__version__) 

Pandas Series What is a Series? A Pandas Series is like a column in a table. It is a 

one-dimensional array holding data of any type. 

#printing dataframe elements 

a = [1, 7, 2] 

myvar = pd.Series(a) 

print(myvar) 

print(myvar[0]) 

 

#printing dataframe elements 

a = [1, 7, 2] 

myvar = pd.Series(a, index = ["x", "y", "z"]) 

print(myvar) 

print(myvar["y"]) 

 

#Note: The keys of the dictionary become the labels. 

calories = {"day1": 420, "day2": 380, "day3": 390} 

myvar = pd.Series(calories) 

print(myvar) 

 

calories = {"day1": 420, "day2": 380, "day3": 390} 

myvar = pd.Series(calories, index = ["day1", "day2"]) 

print(myvar) 

 

DataFrames Data sets in Pandas are usually multi-dimensional tables, called 

DataFrames. Series is like a column, a DataFrame is the whole table. 
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data = { 

  "calories": [420, 380, 390], 

  "duration": [50, 40, 45] 

} 

myvar = pd.DataFrame(data) 

print(myvar) 

A Pandas DataFrame is a 2-dimensional data structure, like a 2-dimensional array, or 

a table with rows and columns. The DataFrame is like a table with rows and columns. 

Pandas use the loc attribute to return one or more specified row(s) 

Locate Row: 

data = { 

  "calories": [420, 380, 390], 

  "duration": [50, 40, 45] 

} 

#load data into a DataFrame object: 

df = pd.DataFrame(data) 

print(df) 

print(df.loc[0]) 

 

#Return row 0 and 1: 

#use a list of indexes: 

print(df.loc[[0, 1]]) 

Named Indexes: With the index argument, you can name your own indexes. 

data = { 

  "calories": [420, 380, 390], 

  "duration": [50, 40, 45] 

} 

df = pd.DataFrame(data, index = ["day1", "day2", "day3"]) 

print(df)  
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Max_rows: The number of rows returned is defined in Pandas option settings. You 

can check your system's maximum rows with the pd.options.display.max_rows 

statement. 

import pandas as pd 

print(pd.options.display.max_rows)  

Generally in local systems the number is set to be 60, which means that if the 

DataFrame contains more than 60 rows, the print(df) statement will return only 60 

rows. We can change the maximum number of rows number with the same statement. 

pd.options.display.max_rows = 9999 

df = pd.read_csv('Iris.csv') 

print(df)  

print (df.head()) 

Data Viewing: One of the most used method for getting a quick overview of the 

DataFrame, is the head() method. The head() method returns the headers and a 

specified number of rows, starting from the top. 

#print top 7 rows of the data frame 

df = pd.read_csv('Iris.csv') 

print(df.head(7)) 

There is also a tail() method for viewing the last rows of the DataFrame. The tail() 

method returns the headers and a specified number of rows, starting from the bottom. 

# print last 5 rows 

print(df.tail())  

Info About the Data: The DataFrame object has a method called info(), that gives 

you more information about the data set. 

import pandas as pd 

df = pd.read_csv('Iris.csv') 

print(df.info())  

Null Values: The info() method shows how many Non-Null values are present in each 

column, and in the data set. Empty values, or Null values, can be bad when analyzing 

data, and such rows should be removed with empty values. This is called data 

cleaning. Data Cleaning means fixing bad data in the data set. Bad data could be 

Empty cells, Data in wrong format, Wrong data, Duplicates. Empty cells can 

potentially give wrong result when you analyze data. 
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Removing Rows: One way to deal with empty cells is to remove rows that contain 

empty cells.  

import pandas as pd 

df = pd.read_csv('Iris.csv') 

new_df = df.dropna() 

print(new_df.head()) 

# Note: By default, the dropna() method returns a new DataFra
me, and will not change the original. 

# If you want to change the original DataFrame, use the inpla
ce = True argument: 

df = pd.read_csv('data.csv') 

df.dropna(inplace = True) 

print(df) 

Replace Empty Values: Another way of dealing with empty cells is to insert a new value 
instead. This way no need to delete entire rows just because of some empty cells. The fillna() 
method allows to replace empty cells with a value: 

df = pd.read_csv('data.csv') 

df.fillna(130, inplace = True) 

Replace Only for Specified Columns: The example above replaces all empty cells in the 
whole Data Frame. To only replace empty values for one column, specify the column name 
for the DataFrame. 

df = pd.read_csv('data.csv') 

df["Calories"].fillna(130, inplace = True) 

Matplotlib: Matplotlib is one of the most popular Python packages used for data 

visualization. It is a cross-platform library for making 2D plots from data in arrays. 

It provides an object- oriented API that helps in embedding plots in applications 

using Python GUI toolkits such as PyQt, WxPythonotTkinter. It can be used in 

Python and IPython shells, Jupyter notebook and web application servers also. 

Sample Codes: 
import matplotlib.pyplot as plt 
### Line Plot 
x = [1,2,3,4,5,6,7,8,9,10] 
y = [1,4,9,16,25,36,49,64,81,100] 
plt.figure(figsize=(8,4)) 
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plt.title("Line Plot 
Graph",fontsize=15,color='red',fontweight='bold') plt.xlabel("X 
Axis",fontsize=12,color='blue',fontweight='bold') plt.ylabel("Y 
Axis",fontsize=12,color='blue',fontweight='bold') 
## labels=[0,1,2,3,4,5,6,7,8,9,10] 
##plt.xticks(labels,fontsize=15,color='green') 
plt.xticks(fontsize=15,color='green') 
plt.yticks(fontsize=15,color='green') 
#plt.plot(x,y,'o-; o--;. ; --; --*; v; ^; o; -s; -*',label="Line 
Plot",color="purple",lw=1) 
plt.plot(x,y,'-o',label="Line Plot",color="purple",lw=1) 
plt.legend(loc=2,fontsize=12) 
plt.grid() 
plt.show() 
 
Output: 

                                           Figure 1: Line plot graph 

 

# Bar Plot 
x = ["A","B","C","D","E"] y = [10,20,40,30,50] 
plt.figure(figsize=(8,4)) 
plt.title("Bar Plot Graph",fontsize=15,color='brown', 
fontweight='bold') plt.xlabel("X Axis",fontsize=12,color='blue') 
plt.ylabel("Y Axis",fontsize=12,color='blue') 
plt.xticks(fontsize=15,color=orange) 
plt.yticks(fontsize=15,color='green') 
plt.bar(x,y,label="Bar Plot",color=["orange","green"],width=0.5) 
plt.legend(loc=2,fontsize=12) 
plt.show() 
 

Output: 
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Figure 2: Bar plot graph 

 
## Scatter Plot 
x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 
y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 
plt.figure(figsize=(6,4)) 
plt.title("Scatter Plot Graph",fontsize=15,color='red') 
plt.xlabel("X Axis",fontsize=12,color='blue') plt.ylabel("Y 
Axis",fontsize=12,color='blue') 
plt.xticks(fontsize=15,color='green') 
plt.yticks(fontsize=15,color='green') 
plt.scatter(x,y,label="Scatter Plot",color="purple",s=40,marker = 
"o") plt.legend(loc=2,fontsize=12) 
plt.show() 

Output: 
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Figure 3: Scatter plot graph 

### Histogram 

import numpy as np 

np.random.seed(10) 

data = np.random.randint(1,100,50) print(data) 
plt.hist(data,rwidth=0.5,bins=5,color="pink") plt.show() 
 
Output: 

 
                  Figure 4: Histogram of a randomly generated set of numbers 
 

### simple pie chart 
import numpy as np 

import matplotlib.pyplot as plt 
labels=['playing','sleeping','reading','eating'] sizes = 
[25,25,25,25] 

colors=['red','green','yellow','blue'] 

plt.pie(sizes, labels=labels, colors=colors, 
autopct="%.2f%%",) plt.axis('equal') 

plt.show() 

 

Output: 
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Figure 5: Pie chart 

 
### Pie Chart  
plt.figure(figsize=(6,6)) slices = [90,80,30,70,10,100] 

activities = 
["Playing","Eating","Sleeping","Reading","Gyming","Gaming"] 
cols = ["red","green","orange","purple","pink","yellow"] 

plt.pie(slices,labels=activities,colors=cols,autopct="%1.2f%%
", explode=[0,0,0.3,0,0.3,0]) 

plt.show() 
 

Output: 

 
 

Figure 6: Pie chart with explode feature 
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### Line Plot with two lines 
x = [1,2,3,4,5] 

y1 = [10,20,40,30,50] 

y2 = [5,15,25,35,45] 

plt.figure(figsize=(8,4)) 

plt.title("Line Plot Graph",fontsize=15,color='red') 
plt.xlabel("X Axis",fontsize=12,color='blue') plt.ylabel("Y 
Axis",fontsize=12,color='blue') 
plt.xticks(fontsize=15,color='green') 
plt.yticks(fontsize=15,color='green') 

plt.plot(x,y1,'--',label="Line Plot 1",color="purple",lw=1) 
plt.plot(x,y2,'--',label="Line Plot 2",color="red",lw=1) 
plt.legend(loc=2,fontsize=12) 

plt.grid() 

plt.show() 

Output: 

 

Figure 7: Line Plot with two lines in one diagram 

 

#### Sub Plot 
x = [1,2,3,4,5] 

y1 = [10,20,40,30,50] 

y2 = [5,15,25,35,45] 

y3 = [54,154,254,354,445] 

y4 = [25,215,225,325,425] 

plt.figure(figsize=(10,8)) 
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plt.subplot(2,2,1) 

plt.plot(x,y1,label="Line Plot 1",color="purple",lw=1) 
plt.title("Line Plot Graph 1",fontsize=15,color='red') 

plt.subplot(2,2,2) 

plt.plot(x,y2,label="Line Plot 2",color="purple",lw=1) 
plt.title("Line Plot Graph 2",fontsize=15,color='blue') 

plt.subplot(2,2,3) 

plt.plot(x,y3,label="Line Plot 3",color="purple",lw=1)  

plt.title("Line Plot Graph 3",fontsize=15,color='green') 

plt.subplot(2,2,4) 

plt.plot(x,y4,label="Line Plot 4",color="purple",lw=1)  

plt.title("Line Plot Graph 4",fontsize=15,color='purple') 
plt.savefig("graph.png") 

plt.show() 

 

Figure 8: Sub plot feature with four different Line Plot graph
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1. Introduction 

Machine learning (ML) can be considered under the gamut of artificial intelligence 
with the subject of both statistics and computer science focusing on the use of data 
and algorithms to imitate the way that humans learn, gradually improving its 
accuracy. ML which usually resort to soft computing and are mostly data driven in 
the sense that they are very much complementary to the model driven techniques like, 
say, regression or time series models. They are also called data mining techniques 
owing to its very nature of mining and revealing any hidden information present in 
the data what with a large number of variables and data points involved and are very 
much computer intensive. In contrast to traditional statistical methods, using ML 
techniques, the very large database is allowed to bring out non-linear complex 
relationships that may exist between the variables involved which otherwise cannot 
be captured by the former. 

With the objective of adapting to a given environment and learning from experience, 
ML techniques have immensely transformed the way data are analyzed. ML is 
programming computers to optimize a performance criterion using example data or 
past experience (Alpaydin, 2010). We need learning in cases where we cannot directly 
write a computer program to solve a given problem, but need example data or 
experience. One case where learning is necessary is when human expertise does not 
exist, or when humans are unable to explain their expertise. Consider the recognition 
of spoken speech—that is, converting the acoustic speech signal to an ASCII text; we 
can do this task seemingly without any difficulty, but we are unable to explain how 
we do it. Different people utter the same word differently due to differences in age, 
gender, or accent. In ML, the approach is to collect a large collection of sample 
utterances from different people and learn to map these into words. 

Another case is when the problem to be solved changes in time, or depends on the 
particular environment. We would like to have general purpose systems that can adapt 
to their circumstances, rather than explicitly writing a different program for each 
special circumstance. Consider routing packets over a computer network.  The path 
maximizing the quality of service from a source to destination changes continuously 
as the network traffic changes. A learning routing program is able to adapt to the best 
path by monitoring the network traffic.  

To fix ideas, let us look definitions of ML given by other researchers. ML is the 
systematic study of algorithms and systems that improve their knowledge or 
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performance with experience (Flach, 2012). The term ML refers to the automated 
detection of meaningful patterns in data (Shwartz and David, 2014). It can be 
considered as a tool in almost any task that requires information extraction from large 
data sets. Many application areas are already encountered in our daily routine. Search 
engines learn by experience and give us the best results, antispam software learn over 
time to filter our email messages, and credit card transactions have in-built 
mechanisms that are secured by a software that, in a way, use ML to detect and prevent 
frauds. Digital cameras learn and are used for facial detection and intelligent personal 
assistance applications on smart-phones learn to recognize voice commands. One 
common feature of all of these applications is that, in contrast to more traditional uses 
of computers, in these cases, due to the complexity of the patterns that need to be 
detected, a human programmer cannot provide an explicit, fine-detailed specification 
of how such tasks should be executed. Taking example from intelligent beings, many 
of our skills are acquired or refined through learning from our experience (rather than 
following explicit instructions given to us). ML tools are concerned with endowing 
programs with the ability to “learn” and adapt. Hence automated learning is nothing 
but ML as computers are programmed in such a way that they “learn” from input 
available to them. Loosely, learning is the process of converting knowledge or 
experience into expertise. Here the input to a learning algorithm is ‘training data’, 
representing experience, and the output is some expertise.  

Shwartz and David (2014) also cite an example to demonstrate a typical ML task. 
Suppose a machine is programmed to learn how to filter spam e-mails. A naive 
solution would be that the machine simply memorize all previous e-mails that had 
been labeled as spam e-mails by the human user. When a new e-mail arrives, the 
machine will search for it in the set of previous spam e-mails. If it matches one of 
them, it will be trashed (moved to Trash folder). Otherwise, it will be moved to the 
user’s Inbox folder. While the preceding “learning by memorization” approach is 
sometimes useful, it lacks an important aspect of learning systems – the ability to label 
unseen e-mail messages. A successful learner should be able to progress from 
individual examples to broader generalization. This is also referred to as inductive 
reasoning or inductive inference. To achieve generalization in the spam filtering task, 
the learner can scan the previously seen e-mails, and extract a set of words whose 
appearance in an e-mail message is indicative of spam. Then, when a new e-mail 
arrives, the machine can check whether one of the suspicious words appears in it, and 
predict its label accordingly. Such a system would potentially be able correctly predict 
the label of unseen e-mails.  

Using the same spam email problem discussed above, Flach (2012) has given 
additional conceptual insights. A machine learning problem may have several 
solutions, but how one chooses among these solutions is the key to performing better. 
One way to think about this is to understand that we don’t really care that much about 
performance on training data – we already know which of those e-mails are spam. 
What we care about is whether future e-mails are going to be classified correctly. 
While this appears to lead into a vicious circle – in order to know whether an e-mail 
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is classified correctly one needs to know its true class, but as soon as one knows its 
true class, he/ she do not need the classifier anymore – it is important to keep in mind 
that good performance on training data is only a means to an end, not a goal in itself. 
In fact, trying too hard to achieve good performance on the training data can easily 
lead to a fascinating but potentially damaging phenomenon called ‘over-fitting’. 

The concept of overfitting is further elaborated by Flach (2012) by means of another 
example. Suppose a student is preparing for an exam. Helpfully, the teacher has made 
previous exam papers and their worked answers are available. The student begins by 
trying to answer the questions from previous papers and compares his answers with 
the model answers provided. Unfortunately, he gets carried away and spends all his 
time on memorizing the model answers to all past questions. Now, if the upcoming 
exam completely consists of past questions, he is certain to do very well. But if the 
new exam asks different questions about the same material, he would be ill-prepared 
and get a much lower mark than with a more traditional preparation. In this case, one 
could say that he was overfitting the past exam papers and that the knowledge gained 
did not generalize to future exam questions. Generalization is thus the most 
fundamental concept in machine learning. Having said that, overfitting is not the only 
possible reason for poor performance on new data. It may just be that the training data 
used by the ML program to set its weights is not representative for the kind of, say, e-
mails, one gets. One possible solution is to use (i.e. to supply to the ML program) 
different training data that exhibits the same characteristics, if possible actual spam 
and valid e-mails that have been received. 

In order that such inductive reasoning might not lead us to false conclusions, learning 
mechanisms are developed to distinguish between useful learning and rote learning 
which is crucial to the development of automated learners. While human learners can 
rely on common sense to filter out random meaningless learning conclusions, once 
we export the task of learning to a machine, we must provide well defined crisp 
principles that will protect the program from reaching senseless or useless 
conclusions. The development of such principles is a central goal of the theory of ML. 

Tasks that are too complex to program necessitates the need for ML. There are 
numerous tasks that human beings perform routinely, yet introspection concerning 
how they do them is not sufficiently elaborate to extract a well-defined program. 
Examples of such tasks include driving, speech recognition, and image understanding. 
In all of these tasks, state of the art ML programs that “learn from their experience,” 
achieve quite satisfactory results, once exposed to sufficiently many training 
examples. On the other hand, certain tasks are beyond human capabilities that belong 
to a wide family of tasks that benefit from ML techniques related to the analysis of 
very large and complex data sets. These tasks/ data sets could be astronomical data, 
turning medical archives into medical knowledge, weather prediction, analysis of 
genomic data, web search engines etc. With more and more available digitally 
recorded data, it becomes obvious that there are treasures of meaningful information 
buried in data archives that are way too large and too complex for humans to make 
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sense of. Learning to detect meaningful patterns in large and complex data sets is a 
promising domain in which the combination of programs that learn with the almost 
unlimited memory capacity and ever-increasing processing speed of computers opens 
up new horizons.  

Another important feature of ML is its adaptiveness. By contrast, one limiting feature 
of programmed tools is their rigidity – once the program has been written down and 
installed, it stays unchanged. However, many tasks change over time or from one user 
to another. ML tools – programs whose behavior adapts to their input data – offer a 
solution to such issues; they are, by nature, adaptive to changes in the environment 
they interact with. Typical successful applications of machine learning to such 
problems include programs that decode handwritten text, where a fixed program can 
adapt to variations between the handwriting of different users; spam detection 
programs, adapting automatically to changes in the nature of spam e-mails; and 
speech recognition programs. 

In a sense, ML can be viewed as a branch of AI (Artificial Intelligence), since the 
ability to turn experience into expertise or to detect meaningful patterns in complex 
sensory data is a cornerstone of human (and animal) intelligence. However, one 
should note that, in contrast with traditional AI, ML is not trying to build automated 
imitation of intelligent behavior, but rather to use the strengths and special abilities of 
computers to complement human intelligence, often performing tasks that fall way 
beyond human capabilities. For example, the ability to scan and process huge 
databases allows ML programs to detect patterns that are outside the scope of human 
perception.  

2. Different types of learning in ML 

Machines analyze their own behavior, they learn from their own mistakes leading to 
taking the appropriate decisions based on its analysis. ‘Learn from your mistakes’ is 
easily said than followed. But statement has made so much of an impact in the minds 
of the technologists that they started adopting this technique of making machines learn 
from their mistakes so that they can intelligently work in their future actions. This act 
of parenting is the new cool in the tech world as the question always lingers in the 
readers’ minds as to how a machine would learn from the mistakes it commits. The 
logic behind this concept is very simple and easy to understand. It is very much like 
how a normal person learns from his mistake and how efficiently he uses his senses 
to avert committing the same mistake again. 

It has been extensively elaborated in the aforesaid discussion that the property 
that is of utmost importance for a ML model or method is its capacity to learn 
from its environment and to improve its performance through learning. This 
learning happens through an interactive process which in turn adjusts the system 
and the ML method becomes more knowledgeable about its environment after the 
learning process. That is, we can say that the ML is stimulated by its environment 
and undergoes changes in its parameters as a result of this stimulation. Eventually, 
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the ML method responds in a new way to the environment because of the changes 
that have occurred in its internal structure. 

Learning or training is the term used to describe the process of finding the values 
of the parameters of ML (in neural networks which is one of the several types of 
ML these parameters are called weights). The two chief types of learning broadly 
are supervised and unsupervised learning. Supervised learning, also called 
learning with a teacher, occurs when there is a known target value associated with 
each input in the training set, when we consider a neural network as an ML 
method. The output of the network is compared with the target value and this 
difference is used to train the network (alter the weights). There are many 
different algorithms for training neural networks using supervised learning with 
backpropagation (error correction learning) as one of the more common ones. A 
biological example of supervised learning is when you teach a child the alphabet.  
You show him or her a letter and based on his or her response you provide 
feedback to the child. This process is repeated for each letter until the child 
knows the alphabet. 

Unsupervised learning is needed when the training data lacks target output values 
corresponding to input patterns. The network must learn to group or cluster the 
input patterns based on some common features. This type of training is also 
called learning without a teacher because there is no source of feedback in the 
training process. A biological example would be when a child touches a hot 
red tip of a mosquito coil lit. He or she soon learns, without any external 
teaching, not to touch it. In fact, the child may associate a bright red glow with 
heat and learn to avoid touching objects with this feature. 

One particular class of unsupervised system is based on competitive learning. Here 
the output neurons compete amongst themselves to be activated, with the result that 
only one is activated at any one time. This activated neuron is called a winner-takes 
all neuron or simply the winning neuron. Such competition can be induced/ 
implemented by having lateral inhibition connections (negative feedback paths) 
between the neurons. The result is that the neurons are forced to organise themselves, 
hence the name, ‘Self Organizing Map (SOM)’ which learning is used typically in 
one type of neural network architecture called Kohonen or Self Organizing Feature 
Map (SOFM). 

One more type of learning is what is called the reinforcement learning. Now assume 
that a baby is trying to walk. For the first few days it would analyze how the people 
around are walking. It’s learning starts right from seeing how others walk, how others 
move and what others do while walking and continues until it stands up and walks by 
itself. Now whenever a baby tries to stand up but falls, it learns from itself and again 
gets up to stand by itself and proceeds until it starts to walk. 

According to Narayanan (2018), the concept of reinforcement learning can be likened 
to a game wherein the player (here the machine) gets a credit whenever he/she takes 
a right step towards achieving the goal and loses it whenever he takes a bad decision. 
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In Reinforcement Learning, the player which is an agent, manipulates the 
environment and then takes the decision. If the decision is correct there is a reward 
that gets added to the score (0 at the beginning) and if the decision is wrong the reward 
gets reduced. So, this process is allowed to happen until the agent attains victory in 
the game. According to the various decisions that are taken by the agent the overall 
score is calculated and with this information the best way of winning the game is 
formulated. 

The difference between ML and Statistical Modelling (SM) have gone down 
significantly over past decade. While ML are mostly data driven, SM is the process 
of applying statistical analysis to a dataset by means of a mathematical representation 
of observed data. Both the branches have learned from each other a lot and will further 
come closer in future as they complement each other. A computer scientist might view 
SM as quaint while a statistician might express bewilderment at the buzz around ML 
and question why more principled, interpretable SM would not do the trick. This 
points towards two schools of thinking on problems with different goals.  

3. Differences and similarities between ML and SM 

Srivastava (2015) has discussed the differences between ML and SM in detail.  The 
common objective behind using either of the tools is learning from data in the sense 
that both these approaches aim to learn about the underlying phenomena by using data 
generated in the process. Even though the end goal for both ML and SM is same, the 
formulation of two are quite different and at the same time the output is many times 
obtained in a still more different manner. While ML is an algorithm that can learn 
from data without relying on rules-based programming, SM is formalization of 
relationships between variables in the form of mathematical equations. More details 
on ML and on differences between ML and SM can be found in Ramasubramanian 
(2022a, 2022b). 

Carmichael and Marron (2018), when discussing in detail about Data Science (in 
which one of the subdomains is ML) have given solid opinions and perspectives as 
to how the business of learning from data has come to be more of associated with 
data science which was traditionally the business of statistics. They thus argue that 
ML can be understood as a broader, task-driven and computationally-oriented 
version of statistics. In this way, evolving approaches to modern data analysis like 
ML relate to the existing discipline of SM.  

While it may outwardly appear that ML is simply       a rebranding of SM, there were 
changes that happened over a period of time to consider for discussing such a 
viewpoint from both old and new ways of thinking. While SM has been around for a 
long time, its economics (costs of and value derived) have changed primarily due to 
technology driving the availability of data, computational capabilities and ease of 
communication. The most obvious advances are in computer hardware (e.g. faster 
CPUs, smaller microchips, GPUs, distributed computing). Similarly, algorithmic 
advances play a big role in making computation faster and cheaper. There are many 
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new/ improving technologies which allow us to gather    data in new, faster and 
cheaper ways, including drones, medical imaging, sensors, better robotics, etc. 
Improved software makes it faster, cheaper and easier to execute ML. Such drastic 
changes over time contributed to the fact that ML in fact churns out more value out 
of data. Areas of statistics previously considered specialized such as statistical 
software, exploratory analysis, data visualization, high dimensional analysis, complex 
data objects and the use of optimization methods have become dramatically more 
valuable and commonplace. Such an analysis about the genesis and development of 
ML may give insights into its aspects about why the rise of computation is tied to the 
rise of exploratory and predictive analysis.  

No doubt, ML appears to be involving three major disciplines viz., mathematics/ 
statistics, computer science and the application domain but SM also do involve all 
these though not in an explicit fashion. ML focusses more on solving specific 
problems in contrast with the type of deep understanding that is typical in SM.. ML 
tools are of direct benefit to the users while SM serve as the theoretical basis for 
developing such tools.  It is noted here that computer science experts consider ML 
with its large-scale computation requiring data storage cum retrieval as belonging to 
their subject domain than statistics while SM is obviously the forte of statisticians. 
Even data science (with ML in it) is viewed by some as a subset of statistics while 
others argue statistics as a subset of data science.  

Some are of the opinion that SM has too much theory and not enough computation, 
while ML is viewed exactly the opposite way even though such views are not fully 
correct. SM was primarily developed to help people deal with pre-computer era 
problems and analysis while ML emphasizes on data problems of this digital era, 
like accessing information from large databases, writing code to manipulate data, 
and visualizing data including modeling. Rather SM has changed significantly in 
response to new technology. SM while continuing to emphasize on theory, also have 
started focusing more on computing in order to take on the data problems of the 
computer age. Far from viewing SM as something old fashioned, it has transformed 
into ML. Having said that, the need for sound statistical and theoretical thinking is 
greater than ever in the data science age. 

Breiman et al. (2001) discusses many of the differences between predictive 
modeling (read ML) and inferential modeling (read SM). ML often uses more 
sophisticated, computationally intensive models that comes with a loss in 
interpretability and general understanding about how the model works. ML also 
places less emphasis on theory/ assumptions because there are fairly good, external 
metrics to tell the analyst how well they are doing (e.g. test set error). 

ML is one of the main drivers of artificial intelligence (AI). The fact that data can be 
used to help computers automate things using ML is perhaps one of the most 
impactful innovations of recent decades. Modern AI systems are typically based on 
deep learning (advancement of ML) and are extremely data hungry.  One of the 
biggest ways data in impacting society is by powering automation through ML. 
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The decades of SM’s hard-won knowledge about dealing with data is salient to 
many applications of data driven automation in ML. In addition, automation 
presents new technical challenges to SM since ML often involves applying 
sophisticated modeling techniques to large, complex datasets. One of the primary 
technical challenges is interpretability about understanding the model itself. Easily 
comprehensible models are generalized linear models (e.g. of SM) and decision trees 
(e.g. of ML) while an example of an uninterpretable model is a deep neural network 
(e.g. of ML). All said, ML still remains a black box model because the analyst 
cannot fully understand it. 

ML, particularly deep learning, may cause complex data processing to be more 
frequently used in modern data analysis. A lot of work in ML is about measurement: 
image recognition, image captioning, speech recognition, machine translation, 
syntactic parsing, sentiment analysis, etc. These examples somewhat blur the line 
between data processing and data gathering. In due course of time, it will be more 
common for data analysts to have one or more variables in their datasets which are 
the output of a deep learning model. ML will create a lot of value in data processing 
in many domains. 

The purpose of (supervised) ML is obtaining a model that can make repeatable 
predictions. One typically do not care if the model is interpretable, although it is 
always recommended that testing be done to ensure that model predictions do make 
sense. Stewart (2019) argues that ML is all about results, it is likely working in a 
company where your worth is characterized solely by your performance (say, 
predictions). Whereas, SM is more about finding relationships between variables and 
the significance of those relationships, whilst also catering for prediction. 

Finally, as regards to the question of whether ML and SM are really two different and 
diverse tools, if statistics is viewed as the narrow discipline, then the answer is in the 
affirmative. However, if SM embraces the broader idea of greater data science in 
which ML is a sizable component, then they both become one and the same. ML 
generally sacrifice interpretability for predictive power. The pursuit of understanding 
ML models to make them more interpretable is a wide-open area for statisticians. 
These questions may involve narrowing the gap between ML and SM.  

4. scikit-learn library for ML in Python 

scikit-learn is an open source library for ML in Python (Pedregosa et al., 2011) 
integrating a wide range of state-of-the-art ML algorithms for medium-scale 
supervised and unsupervised problems. This package focuses on bringing ML to non-
specialists using a general-purpose high-level language. Emphasis is put on ease of 
use, performance, documentation, and Application Programming Interface (API) 
consistency. It has minimal dependencies and is distributed under the simplified BSD 
license (which stands for Berkeley Source Distribution and is a low restriction and 
requirement license type used for the distribution of many freeware, shareware and 
open source software) encouraging its use in both academic and commercial usable 
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settings. Source code, binaries, and documentation can be downloaded from 
http://scikit-learn.sourceforge.net. 

scikit-learn  contains simple and efficient tools for predictive data analysis which are 
accessible to everybody, and reusable in various contexts. It has been built on NumPy, 
SciPy, and matplotlib of Python. sci-learn can used for supervised learning problems 
of ML such as linear models,  linear and quadratic discriminant analysis, kernel ridge 
regression, Support Vector Machines (SVM), stochastic gradient descent, nearest 
neighbors, Gaussian processes, naive Bayes, decision trees, ensemble methods, 
multiclass and multioutput algorithms, isotonic regression, neural network models 
using supervised learning algorithms. It can be used also for unsupervised learning 
problems such as Gaussian mixture models, Clustering and Neural network models 
that use unsupervised learning algorithms.   

sci-learn can thus be used for classification (Identifying which category an object 
belongs to) with applications in spam detection, image recognition etc. via algorithms 
viz., SVM, nearest neighbors, random forest (RF) etc.; regression (i.e. predicting a 
continuous-valued attribute associated with an object) with applications in drug 
response, stock prices etc. via algorithms viz., Support Vector Regression (SVR), 
nearest neighbors, RF etc.; clustering (i.e. automatic grouping of similar objects into 
sets) with applications in customer segmentation, grouping experiment outcomes etc. 
via algorithms viz., k-Means, spectral clustering, mean-shift etc.; dimensionality 
reduction (i.e. reducing the number of random variables to consider) with applications 
in visualization, increased efficiency etc. via algorithms viz. Principal Component 
Analysis (PCA), feature selection, non-negative matrix factorization etc.; model 
selection and evaluation, dimensionality reduction, inspection, visualizations, dataset 
transformations and preprocessing; model selection (i.e. comparing, validating and 
choosing parameters and models) with applications in improved accuracy via 
parameter tuning etc. via algorithms viz., grid search, cross validation, metrics etc.; 
preprocessing (i.e. feature extraction and normalization) with applications in 
transforming input data such as text for use with ML algorithms etc. via algorithms 
viz., preprocessing, feature extraction etc. 
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1. Introduction 

In statistical modelling, regression analysis is a set of statistical processes for 

estimating the relationships between a dependent variable (often called the ‘outcome 

variable’) and one or more independent variables (often called ‘predictors’, 

‘covariates’, or ‘features’). Regression analysis is primarily used for two distinct 

purposes. First, it is widely used for prediction and forecasting, which overlaps with 

the field of machine learning. Second, it is also used to infer causal relationships 

between independent and dependent variables. This methodology is widely used in 

business, social and behavioral sciences, biological sciences including agriculture. 

For example, yield of a crop can be predicted by utilizing the relationship between 

yield and other factors like water temperature, rainfall, quantity of fertilizer, quantity 

of seeds, irrigation level and relative humidity, etc. 

A functional relationship between two variables can be expressed by a mathematical 

formula. If ! denotes the independent variable and " the dependent variable, then " 

can be related ! through a functional relation of the form "	 = 	%(!). Given a 

particular value of !, the function % indicates the corresponding value of ". In 

regression analysis, the variable ! is known as input variable, explanatory variable or 

predictor variable. This is an exact mathematical relationship. In statistical relation, 

may not be perfect owing to sampling. The above functional form is made a statistical 

model by adding an error term as " = %(!) + ), where ) denotes the error term. 

Depending on the nature of the relationships between ! and ", regression approach 

may be classified into two broad categories viz., linear regression models and 

nonlinear regression models. The response variable is generally related to other causal 

variables through some parameters. The models that are linear in these parameters are 

known as linear models, whereas in nonlinear models parameters appear nonlinearly.   
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2. Simple Linear Regression (SLR) Model 

Simple linear regression is useful for finding relationship between two continuous 

variables. One is predictor or independent variable and other is response or dependent 

variable. It looks for statistical relationship but not deterministic relationship. 

Relationship between two variables is said to be deterministic if one variable can be 

accurately expressed by the other. For example, using temperature in degree Celsius 

it is possible to accurately predict Fahrenheit. Statistical relationship is not accurate 

in determining relationship between two variables. For example, relationship between 

height and weight. The core idea is to obtain a line that best fits the data. The best fit 

line is the one for which total prediction error (all data points) are as small as possible. 

Error is the distance between the point to the regression line. 

The simple linear regression model is usually written as 

"! = *" + *#!! + )!                                                                                                                 (1) 

where the )!’s are normal random variables with mean 0 and variance +$. The model 

implies (i) The average "-value at a given !−value is linearly related to !. 

(ii) The variation in responses " at a given ! value is constant. 

(iii) The population of responses " at a given ! is normally distributed. 

(iv) The observed data are a random sample. 

Regression model (1) is said to be simple and linear regression model. It is “simple” 

in the sense that there is only one predictor variable and “linear” in the sense that all 

parameters appeared linearly with the predictor variables. The parameters *" and *# 

in regression model (1) are called regression coefficients, *# is the slope of the 

regression line. It indicates the change in the mean of the probability distribution of " 

per unit increase in !. The parameter *" is the "	intercept of the regression line. 

2.1 Estimation of Parameters in a Simple Linear Regression Model 

In the above models the variables " and ! are known, these are observed. The only 

unknown quantities are the parameters *’s. In regression analysis, our main concern 

is how precisely we can estimate these parameters. Once these parameters are 

estimated, our model becomes known and we can use it for further analysis. The 

method of least squares is generally used to estimate these parameters. For each 

observations (!! , "!), the method of least squares considers the error of each 

observation, i.e, for a simple model )! = "! − *" − *#!!. The method of least squares 

requires the sum of the . squared errors. This criterion is denoted by /: 
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/ = ∑ ("! − *" − *#!!)$%
!&#                                                                                                        (2) 

According to the method of least squares, the estimators of *" and *# are those values 

of *1"  and *1#, respectively, that minimize the criterion / for the given observations. 

To minimize /, we differentiate / with respect to each parameter and equate to zero. 

We get as many equations as the number of parameters. Solving these equations 

simultaneously, we get the estimates of parameters. For example, for the regression 

model (1) the values of  *1"  and *1#  that minimizes / for any particular set of sample 

data are given by the following simultaneous equations: 

∑ "!%
!&# = .*1" + *1# ∑ !!%

!&#                                                                                                          (3) 

∑ !!"!%
!&# = *1" ∑ !!%

!&# + *1# ∑ !!
$%

!&#                                                                                          (4) 

These two equations are called normal equations and can be solved for *1"  and *1# as 

follows 

*1# =
∑ ()!*)̅)(-!*-.)"
!#$
∑ ()!*)̅)%"
!#$

                                                                                                                  (5) 

*1" =
#
% (∑ "! − *# ∑ !!%

!&#
%
!&# ) = "2 − *#!̅                                                                                  (6) 

where, "2 and !̅ are the means of the "! and !! observations, respectively. 

3. Multiple Linear Regression Model (MLR) Model 

A regression model that involves more than one regressor variable is called a multiple 

regression model i.e., the multiple linear regression model is used to study the 

relationship between a dependent variable and one or more independent variables. 

The generic form of the linear regression model is 

" = %4!#, !$, … , !/6 + ) = *"+*#!# + *$!$ +⋯+ */!/ + )                                                          

(7) 

where, " is the dependent or explained variable and !#, !$, … , !/ are the independent 

or explanatory variables. The regression model in the equation describes above is 

linear in the sense, it is a linear function of the unknown parameters *", *#, *$, … , */. 

In general, any regression model that is linear in the parameters (*’s) is a linear 

regression model, regardless of the shape of the surface that it generates. We have 

also assumed that the expected value of the error term ) is zero. The parameter *" is 

the intercept of the regression model. If the range of the data includes !# = !$ = ⋯ =

!/ = 0, then *" is the mean of " when !# = !$ = ⋯ = !/ = 0. Otherwise *" has no 

physical interpretation. The parameter *# indicates the expected change in response 
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(") per unit change in !# when !$, … , !/ are held constant. Similarly *$ measures the 

expected change in response (") per unit change in !$ when !#, … , !/ are held 

constant. For this reason the parameters *! , ∀	: = 1,2, … , = are often called as partial 

regression coefficients. 

3.1 Assumptions of the Multiple Linear Regression Model 

i. Linearity 

The model defined by the following equation 

" = %4!#, !$, … , !/6 + ) = *#!# + *$!$ +⋯+ */!/ + ) specifies a linear 

relationship between " and > and our primary interest is in estimation and inference 

about the parameter vector ?. For the regression to be linear in the sense described 

here, it must be of the form in the original variables or after some suitable 

transformation. 

ii. Full rank 

There are no exact linear relationships among the variables in the model. > is an . × = 

matrix with rank =. Hence > has full column rank; the columns of > are linearly 

independent and there are at least = observations (. ≥ =). 

iii. Exogeneity of the independent variables: 

The disturbance is assumed to have conditional expected value zero at every 

observation, which we can write as C[)!|>] = G. 

In this equation, the left hand side states, in principle, that the mean of each )! 

conditioned on all observations > is zero. This strict exogeneity assumption states, in 

words, that no observations on > convey information about the expected value of the 

disturbance. 

iv. Homoscedasticity: 

The fourth assumption concerns the variances and covariance of the disturbances: 

HIJ()!|>) = +$, ∀	: = 1,… , .  

KLM4)! , )0N>6 = 0	∀	: ≠ P                                                                      (8) 

Constant variance is labelled homoscedasticity. Consider a model that describes the 

profits of firms in an industry as a function of, say, size. Even accounting for size, 

measured in dollar terms, the profits of large firms will exhibit greater variation than 

those of smaller firms. The homoscedasticity assumption would be inappropriate here. 

Survey data on household expenditure patterns often display marked 
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heteroscedasticity, even after accounting for income and household size. The two 

assumptions imply that 

 C[))1|>] = Q

+$ 0 ⋯ 0
0 +$ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ +$

T = +$U                                                                          

(9) 

v. Data generating process for the regressors 

It is common to assume that >2 is nonstochastic, as it would be in an experimental 

situation. Here the analyst chooses the values of the regressors and then observes "!. 

This process might apply, for example, in an agricultural experiment in which "! is 

yield and >2 is fertilizer concentration and water applied. 

vi. Normality 

It is convenient to assume that the disturbances are normally distributed with zero 

mean and constant variance. This is a convenience that we will dispense with after 

some analysis of its implications. The normality assumption is useful for defining the 

computations behind statistical inference about the regression, such as confidence 

intervals and hypothesis tests. For practical purposes, it will be useful then to extend 

those results and in the process develop a more flexible approach that does not rely 

on this specific assumption. 

)|>~W(G, +$U)                                                                                                                                          (10) 

The validity of these assumptions is needed for the results to be meaningful. If these 

assumptions are violated, the result can be incorrect and may have serious 

consequences. If these departures are small, the final result may not be changed 

significantly. But if the deviations are large, the model obtained may become unstable 

in the sense that a different sample could lead to an entirely different model with 

opposite conclusions. So such underlying assumptions have to be verified before 

attempting to regression modeling. One crucial point to keep in mind is that these 

assumptions are for the population, and we work only with a sample. So the main 

issue is to make a decision about the population on the basis of a sample of data. 

Several diagnostic methods to check the violation of regression assumption are based 

on the study of model residuals and also with the help of various types of graphics. 

3.2 Estimation of Parameters in a Multiple Linear Regression (MLR) Model 
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The method of least squares can be used to estimate the regression coefficients in Eq. 

(7). Suppose that . > = observations are available, and let "! denote the :th observed 

response and !!0 denote :th observation or level of regressor !0. The data will appear 

in the following table 1. We also assume that the error term ) in the model has C()) =

0 and HIJ()) = +$, and the errors are uncorrelated. 

Table 1: Data for Multiple Linear Regression 

   Regressors  

Observation, : Response, " !# !$ !/ 

1 "# !## !#$ !#/ 

2 "$ !$# !$$ !$/ 

. . . . . 

. . . . . 

. . . . . 

. "% !%# !%$ !%/ 

     

We may write the sample regression model corresponding to (7) as 

" = *"+*#!!# + *$!!$ +⋯+ */!!/ + )  

= *" + ∑ *0!!0 + )!
/
0&# , ∀	: = 1,2, … , .                                                                                                       

(11) 

The least - squares function is then used to estimate the model parameters, which are 

obtained by minimizing the error sum of squares with respect to the parameters 

*", *#, *$, … , */. 

It is more convenient to deal with multiple regression models if they are expressed in 

matrix notation. This allows a very compact display of the model, data, and results. 

In matrix notation, we can express the multiple regression model as 

Y = Z? + [                                                                                                                                                     

(12) 

Where 

Y =

⎣
⎢
⎢
⎢
⎡
"#
"$
..
.
"%⎦
⎥
⎥
⎥
⎤

  Z =

⎣
⎢
⎢
⎡
1 !## ⋯ !#/
1 !$# ⋯ !$/
⋮ ⋮ ⋱ ⋮
1 !%# ⋯ !%/⎦

⎥
⎥
⎤
   ? =

⎣
⎢
⎢
⎢
⎢
⎡
*"
*#
..
.
*/⎦
⎥
⎥
⎥
⎥
⎤

   [ =

⎣
⎢
⎢
⎢
⎡
)#
)$
..
.
)%⎦
⎥
⎥
⎥
⎤

 

Y is a . × 1 vector of responses 
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Z is a . × = matrix of the regressor variables 

? is a . × 1 vector of unknown constants, and 

[ is a . × 1 vector of random errors with )!~NID(0, +$) 

We wish to find the vector of least-squares estimators, ?e that minimizes 

/(?) = ∑ )!
$ = [1[ = (Y − Z?)1(Y − Z?)%

!&#                                                                            

(13) 

Note that /(?) may be expressed as 

/(?) = Y1Y − ?1Z1Y − Y1Z? + ?1Z1Z?  

= Y1Y − f?1Z1Y + ?1Z1Z?                                                                                                   (14) 

Since ?1Z1Y is a 1 × 1 matrix, or a scalar, and its transpose (?1Z1Y)1 = Y1Z? is the 

same scalar. The least square estimators must satisfy 

34
35 = −fZ1Y + fZ1Z?e = G  

Which simplifies  

Z1Z?e = Z1Y                                                                                                                                                (15) 

To solve the normal equations, multiply both sides of (iv) by the inverse of Z1Z. Thus 

the least squares estimator of  

?e = (Z1Z)*#Z1Y                                                                                                                          (16) 

So, the vector of fitted values "g! corresponding to the observed value "! is 

Yh = Z?e = Z(Z1Z)*#Z1Y                                                                                                             (17) 

The difference between the observed value "! and the corresponding fitted values "g! 

is the residual i.e., i! = "! − "g!. The . residuals may be conveniently written in matrix 

notation as 

j = Y − Yh                                                                                                                                        (18) 

4. Estimation of Error Term Variance (k6) 

The variance +$ of the error terms )! in regression model needs to be estimated to 

know the  variability of the probability distribution of ". In addition, a variety of 

inferences concerning the regression function and the prediction of " require an 

estimate of +$. Denote by //C = ∑ ("! − "g!)$%
!&# = ∑ J!

$%
!&#  , is  the residual sum of 

squares. Then an estimate of +$  is given by, 

+g$ = 447
%*/                                                                                                    

(19) 
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where = is the total number of parameters involved in the model including the 

intercept term, if the model contains it. We also denote this quantity by MSE. 

5. Inferences in Linear Regression Models 

In multiple linear regression model, all variables may not be contributing significantly 

to the model. In other word, each of the parameters may not be significant. Therefore, 

these parameters must be tested whether they are significantly different from zero or 

not. That is, we test the null hypothesis (l") against the alternative hypothesis (l#) 

for a parameter *! (say) as follows: 

l":	*! = 0                                                                                                                                    (20) 

l#:	*! ≠ 0  

when l":	*! = 0 is accepted we infer that there is no linear association between " and 

!!. For normal error regression model, the condition *! implies even more than no 

linear association between " and !!.  *! = 0 for the normal error regression model 

implies not only that there is no linear association between " and !! but also that there 

is no relation of any kind between " and !!, since the probability distribution of " are 

then identical at all levels of !!. The test is based on n test   

n = 5!
8(5!)

                                                                                                                                       (21) 

where o(*!)  is the standard error of *! and calculated as o(*!) = p
947

∑ ()!*)̅)%"
!#$

 

The decision rule with this test statistic when controlling level of significance at q  is  

 if |n| ≤ n(1 − q 2⁄ ; . − =)   conclude l",  

 if |n| > n(1 − q 2⁄ ; . − =)  conclude l#. 

Similarly testing for other parameters can be carried out. 

6. Measures of Fitting (u6) 

The overall fitting of a regression line can be judged by the v-statistic by carrying out 

an analysis of variance. If the v-statistic is significant, we say that our model is fitted 

well. However, there are times when the degree of linear association is of interest. A 

frequently used statistic is w$. We describe this descriptive measure to describe the 

degree of linear association between " and !.  

Denote by x// = ∑ ("! − "2)$%
! , total sum of squares which measures the variation in 

the observation "!, or the uncertainty in predicting ", when no account of the predictor 

variable ! is taken. Thus x// is a measure of uncertainty in predicting " when ! is 
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not considered. Similarly, //C measures the variation in the "!when a regression 

model utilizing the predictor variable ! is employed. A natural measure of the effect 

of ! in reducing the variation in ", i.e., in reducing the uncertaintity in predicting ", 

is to express the reduction in variation (x// − //C = //w as a proportion of the total 

variation and it is denoted by   

   w$ = 44:
;44 = 1 − 447

;44                                                         (22) 

The measure w$  is called coefficient of determination and 0 ≤ w$ ≤ 1 . In practice 

w$ is not likely to be 0 or 1 but somewhere between these limits. The closer it is to 1, 

the greater is said to be the degree of linear association between ! and ". Remember 

that w$ statistic should be used only when in the model an intercept term is involved. 

For the model with no intercept, w$  is not a good statistic. In case of “no intercept” 

model, sum of all residuals may not be equal to 0, making w$ inflated.                                                                                                                                                                                                                                                                                                                                                                                                

7. An Illustration of a MLR model 

Consider the following data: 

Table 2: Y as a response variable and >’s as explanatory variables 
Case 

No. 

!! !" !# " Case 

No. 

!! !" !# y 

1 12.980 0.317 9.998 57.702 14 14.231 10.401 1.041 41.896 

2 14.295 2.028 6.776 59.296 15 15.222 1.220 6.149 63.264 

3 15.531 5.305 2.947 56.166 16 15.740 10.612 -1.691 45.798 

4 15.133 4.738 4.201 55.767 17 14.958 4.815 4.111 58.699 

5 15.342 7.038 2.053 51.722 18 14.125 3.153 8.453 50.086 

6 17.149 5.982 -0.055 60.446 19 16.391 9.698 -1.714 48.890 

7 15.462 2.737 4.657 60.715 20 16.452 3.912 2.145 62.213 

8 12.801 10.663 3.048 37.447 21 13.535 7.625 3.851 45.625 

9 17.039 5.132 0.257 60.974 22 14.199 4.474 5.112 53.923 

10 13.172 2.039 8.738 55.270 23 15.837 5.753 2.087 55.799 

11 16.125 2.271 2.101 59.289 24 16.565 8.546 8.974 56.741 

12 14.340 4.077 5.545 54.027 25 13.322 8.589 4.011 43.145 

13 12.923 2.643 9.331 53.199 26 15.949 8.290 -0.248 50.706 

In the present example, we have 3 three predictor variables !#, !$ and !< and there 

are 26 observations. The response variable denoted by ". Applying least square 

method we obtain the parameter estimates as follows:  
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Table 3: ANOVA of a MLR model 
Source Degrees of 

freedom 
Sum of 
Square 

Mean 
Square 

 F-
value 

Prob. > F 

Model 3 1062.34  354.11  109.69 <0.0001 

Error 22 71.02  3.22      

Corrected 

Total 

25 1133.37        

 

Table 4: Parameter Estimates of a MLR model 
Variable Degrees of 

freedom 
Parameter 
Estimates 

Standard 
Error 

t-value Prob. > |t| 

Intercept 1 8.19  6.29  1.30 0.2060 

!& 1 3.56  0.36  9.86 <.0001 

!' 1 -1.64  0.15  -10.28 <.0001 

!( 1 0.33  0.17  1.88 0.0741 

 

The value of w$ of this model is 0.93. From Table 3, we see that v-statistic is highly 

significant, indicating that overall model fitting is good. w$ is also very high. The 

fitted regression line is   "g = 8.19 + 3.56!# − 1.64!$ + 0.33!<. The corresponding 

standard errors are given in the 4th column of Table 3. However, while testing the 

significance of the parameter estimates, we find that the intercept and the parameter 

for the variable !<, i.e.,  are not significant  at 5% level of significance (probability 

values for these parameters are greater than 0.05). 

8. An example of how to implement a multiple linear regression model in 

Python using the scikit-learn library 

import numpy as np 

import pandas as pd 

from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import train_test_split 

data=pd.read_csv(‘yield_data.csv’) 

# split the data into features (X) and target (y) arrays 

X = data.drop("yield", axis=1) 

y = data["yield"] 

# split the data into training and test sets 



 Python for Artificial Intelligence in Agriculture 

 129 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

=0.2) 

# create a Linear Regression model 

mlr = LinearRegression() 

# fit the model to the training data 

mlr.fit(X_train, y_train) 

#Prediction of test set 

y_pred_mlr= mlr.predict(X_test) 

#Predicted values 

print("Prediction for test set: {}".format(y_pred_mlr)) 

# evaluate the model performance 

print("R^2:", mlr.score(X_test, y_test)) 
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1. Introduction: 

Machine learning is a technique that enables a machine to learn on its own. The 
Support Vector Machine (SVM) is a well-known supervised machine learning 
technique developed by Cortex and Vapnik (1995) for binary classification problems. 
The SVM's goal in binary classification is to find a hyperplane that best divides a 
dataset into two classes. Vapnik et al. (1997) developed support vector regression 
(SVR) to deal with regression problems two years after SVM's invention, based on 
similar principles as SVM classification. SVR, as a non-parametric method, does not 
rely on assumptions such as linear regression. Another advantage of using SVR is that 
it allows for the creation of non-linear models. As a result, SVM is popular not only 
for classification but also for modelling and prediction. The performance of SVM is 
determined by the kernel that is used. There are various types of kernels that can be 
used for classification and prediction. SVM has been applied to time series modelling 
and forecasting in a variety of areas over the last decade, including power load 
forecasting (Niu et al., 2010), rainfall forecasting (Ortiz-Garcia et al., 2014), wind 
power forecasting (De Giorgi et al., 2014), and agricultural forecasting (Kumar and 
Prajneshu, 2015). 

2. Support Vector Machine (SVM) in time series: 

Application of SVM in time series is generally utilized when the series shows non 
stationarity and non-linearity process. A tremendous advantage of SVM is that it is 
not model dependent as well as independent of stationarity and linearity. However, it 
may be computationally expensive  during the training. The training of the data driven 
prediction process SVM is done by a function which is estimated utilizing the 
observed data. Let, a time series !(#) which takes the data at time # 
{# = 0,1,2,3, … , -}. 
Now, the prediction function for linear regression is defined as: 

   /(!) = (0. !) + 3                  (1) 

Whereas, for non linear regression, it will be: 

   /(!) = 40. ∅(!)6 + 3              (2)              

Where, 0 dentoes the weights, 3 represents threshold value and ∅(!) is known as 
kernel function. 

If the observed data is linear, then equation (1) will be used. But, for non-linear data, 
the mapping of  !(#) is done to the higher dimension feature space through some 
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function which is denoted as ∅(!) and eventually it is transformed into the linear 
process. Afer that, a linear regression will carry out in that feature space.  

The first and foremost objective is to find out the value of 0 and 3 which will be 
optimal. In SVM, there are two things viz., flatness of weights and error after the 
estimation which are to be minimized. The flatness of the weights is denoted by ‖0‖! 
which is the eucledian norm. Firstly, one has to concentrate on minimization the 
‖0‖!. Second important thing is the minimization of the error. This is also called as 
empirical risk. However, the overall aim is to minimize the regularized risk which is 
sum of empirical risk and the half of the product of the flatness of weight and a 
constant term which is known as regularized constant. The regularized risk can be 
written as- 

   8"#$(/) = 8#%&(/) + '
! ‖0‖!    (3) 

Where, 8"#$(/)	is the regularized risk, 8#%&(/) denotes the empirical risk, : is as 
constant which is called as regularized constant/capacity control term and ‖0‖! is the 
flatness of weights. 

The regularization constant has a significant impact on a better fitting of the data and 
it can also be useful for the minimization of bad generalization effects. In the other 
words, this constant deals with the problem of over-fitting. The overfitting of the data 
can be redued by the proper selection of this constant value. The empirical risk can 
be defined as:- 

   8#%&(/) = (
)∑ <4!(=), >(=), /(!(=), 0)6)*(

+,-                (4) 

Where, >(=) denotes the truth data of predicted value, <(. ) is known as loss function 
and = represents the index to the time series. 

There are various types of loss function in literature. But, two functions viz., vapnik 
loss function and quadratic loss function are most popular and they are generally used. 
The quadratic programming problem has been made to minimize the regularised risk 
which is- 

   Minimize,  (! ‖0‖! + ?∑ <4>(=), /(!(=), 0)6.
+,(         (5)           

 Where, 

<4>(=), /(!(=), 0)6=|>(=) − /(!(=), 0)|−∈ if |>(=) − /(!(=), 0)| ≥∈ 

= 0; otherwise. 

Where, ?	is a constant which equals to the summation normalization factor and ∈ 
represents the size of the tube. 
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The computation of ∈	and ? is done empirically because they are user defined. On 
has to choose proper value of ?	and ∈. Now, dual optimization problem is formed 
using the lagrange multiplier which can be written as: 

Maximize, − (
!∑ (D+ − D+∗))

+,1,( 4D1 − D1∗6〈!(=), !(F)〉−∈ ∑ (D+ − D+∗) +)
+,(

∑ >(=)	(D+ − D+∗))
+,(           (6) 

Subject to,  ∑ (D+ − D+∗) = 0)
+*(  ; D+ , D+∗ ∈ [0, ?] 

The function /(J) is defined as; 

   /(J) = ∑ (D+ − D+∗))
+,( 〈!, !(=)〉 + K        (7) 

KKT conditions are used to get the solution of the weights. 

The significance of kernel function in non-linear support vector machine (NLSVR) is 
very much imporatnt for mapping the data !(=)	into higher dimension feature space  
∅4	!(=)6	in which the data becomes linear. Generally notation for kernel function is 
given as; 

   L(!, !2) = 〈∅(!), ∅(	!2)〉;                        (8) 

There are many methods in literature to solve the quadartic programming. However, 
the most used method is sequential minimization optimization (SMO) algorithm.  

3. Kernel function  

SVM is a learning algorithm which is based on kernel. There are different types of 
kernel which can be used for the classification and prediction purpose. However, there 
is no such rule to make inference on which kernel should one use. All the kernels are 
used separately for the given datasets and whichever gives the better result, one should 
choose that one. Various types Kernel are listed below: 

1. Non linear 

2. Linear 

3. Polynomial 

4. Radial basis function: a) Gaussian Radial basis function b) Laplace Radial 
basis function. 

5. Sigmoid kernel  

6. Hyperbolic tangent kernel 

7. Anova radial basis kernel 

8. Multi-layer perceptron 

9. Linear spline kernel. 
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Kernel function are used for the transformation of the given data into the required 
form. Kernel function is actually a mathematical function. RBF is mostly used kernel 
function. Some kernel functions are described in the following:  

Polynomial kernel equation: Polynomial kernel is generally used in the image 
processing. It is useful for nonlinear modelling. This kernel function is very simple 
yet efficient method. 

   L(J, !) = (J. ! + 1)& ; M= degree of polynomial    (9) 

Gaussian kernel function:  

   L(J, !) = NJM O− ‖4*5‖!
!6! P                            (10) 

      Or L(J, !) = NJM(−>‖J − !‖!), Where, shape of hyperplane is 
controlled by	Q.  

Sigmoid kernel function:  

Sigmoid function is used as the proxy of artificial neural network. 

   L(J, !) = #RSℎ(UJ7 . ! + R)                          (11) 

Linear kernel function:  

Sometimes, linear kernel gives better results as compared to complex and nonlinear 
kernels. Linear 

classifier can be used to test the non-linearity of the datasets. 

   L(J, !) = J. !                                (12) 

4. Advantages of SVM: 

1. It gives global optimum. 

2. Training of SVM is comparatively easier than other machine learning 
techniques. 

3. Well scaling for data with high dimensionality. 

4. It can give a good prediction. 

5. It is based on statistical learning theory. 

6. Work on structural risk minimization. 

7. Risk of overfitting problem may overcome by SVM. 

8. It has good generalization property. 

9. It is useful when there is no prior information about the data. 

10. It also work on unstructured data. 
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5. Illustration: 

Data Description: 

Time series data on Cotton Production (Million Bales) of India from 1950 to 2016 
were taken from the Ministry of Agriculture & Farmers Welfare, Government of 
India. The data from 1950-2011 have been utilized for model building purpose and 
the data from 2012 to 2016 were used to predict the cotton production for the 
validation purpose. 

Support Vector Machine: 

The most important part in SVM technique is the selection of parameters and kernel 
which have to be selected with utmost care to improve the performance of the model 
in order to get better accuracy in forecasting. The best parameters and kernel have 
been selected using “e1701” package (David, 2017) in R software. 

The time series plot of cotton production is illustrated in Fig. 1. It can be seen from 
Table 1 that the time series show a high value of coefficient variation which reprsents 
the presence of highly heterogenous characteristic of the series.   

 

Fig. 1: Time Series Plot of Cotton Production 

Table 1: Summary Statistics of Cotton Production 

Statistic Value Statistic Value 

Minimum 3.04 Maximum 33.20 

1st Quartile 5.54 Standard 
Deviation 

6.81 

Median 7.20 Skewness 2.05 

Mean 9.60 Kurtosis 4.09 

3rd Quartile 11.26 Coefficient of 

Variation 

70.93 
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Table 2 displays the estimated best parameters of SVR after sufficient tuning of SVR 
model and these best parameters have been utilized to build the SVR model. It has 
been seen that the best SVM-kernel function is Radial basis function for SVR. 

Table 2: Parameter estimation of SVR 

Sampling method 10-fold cross validation 

Epsilon (Best Parameter) 0.1 

Cost (Best Parameter) 4 

Gamma (Best Parameter) 1 

Number of Support Vectors 39 

SVM-Type eps-regression 

SVM-Kernel Radial Basis Function 

Fig. 2 shows the graphical representation of the performance of the models for Cotton 
Production series.  Model performance in terms of MSE, MAE and MAPE has been 
shown in Table 3 and Table 4 for training and testing dataset respectively. Here, 
ARIMA (2, 2, 1) model has been fitted based on the lowest AIC values among various 
ARIMA models and the data of cotton production show the non-linearity pattern 
which is tested by Brock, Dechert and Scheinkman (BDS) test. 

 

Fig. 2: Graphical representation of the performance of ARIMA and SVM 
models 

Table 3: Model performance in training dataset using ARIMA and SVM 

Model MSE MAE MAPE 
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ARIMA 6.70 1.83 21.28 

SVM 3.08 1.14 12.73 

 

Table 4: Model performance in testing dataset using ARIMA and SVM 

Model MSE MAE MAPE 

ARIMA 82.45 7.35 22.76 

SVM 9.48 2.54 7.83 

 

Table 5 displays the Out-of-Sample forecast values using ARIMA and SVM.  

Table 5: Model performance in testing dataset using ARIMA and SVM 

Year Actual ARIMA SVM 

2012 34.22 34.98 33.85 

2013 35.9 38.21 34.78 

2014 34.81 41.79 32.67 

2015 30.0 43.82 34.33 

2016 33.09 45.99 28.32 

It has been seen from the Fig. 2 that the fitted graph of the SVM model is more close 
to the graph of original data as compare to ARIMA model both in training and 
forecasting. It is observed from Table 3 and Table 4 that the SVM has a lower MSE, 
MAE and MAPE compared to the ARIMA model in both training and testing dataset. 
It has also been seen from Table 5 that the forecasted values of the SVM are closer to 
the observed values compared to ARIMA. From the above results and discussion, it 
can be inferred that performance of the SVM model is better than the ARIMA model 
in terms of forecasting accuracy.   

6. Conclusion 

In reality, most of the time series data are non-linear in nature. In this study, the data 
of cotton production show non-stationary as well as non-linearity structure which 
were difficult to capture for the ARIMA models. However, SVM has shown its’ 
tremendous performance due to the ability of capturing the non-linear pattern. Being 
a non-linear machine learning technique, SVM has well captured the heterogeneous 
trend of the given dataset. Based on the results, it can be inferred that SVM 
outperformed the ARIMA model. Therefore, it can be used in modeling and 
forecasting of time series to improve the forecasting accuracy in the presence of non-
linear pattern. 
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1. Introduction 
Machine learning can be extensively depicted as computational strategies utilizing 
previous experience to improve performance or to make precise inferences. Here, past 
experience alludes to the past data accessible to the learner. This data could be as 
digitized human labelled training sets or other types of information obtained via 
interaction with the environment. In all cases, its quality and size are essential to the 
accomplishment of the expectations made by the learner. The processes involved in 
machine learning are similar to that of data mining and predictive modelling. Both 
require searching through data to look for patterns and adjusting program actions 
accordingly. Machine learning algorithms are often categorized as supervised or 
unsupervised. Supervised algorithms require both input and desired output, in 
addition to furnishing feedback about the accuracy of predictions during algorithm 
training. Once training is complete, the algorithm will apply what was learned to new 
data. Unsupervised algorithms do not need to be trained with desired outcome data. 
Since the success of a learning algorithm depends on the data used, machine learning 
is inherently related to data analysis and statistics. More generally, machine learning 
techniques are data-driven methods combining fundamental concepts in computer 
science with ideas from statistics, probability and optimization. The standard machine 
learning tasks which have been extensively studied are classification, Regression, 
Ranking, clustering and dimensionality reduction. 

Recently there has been a lot of interest in “ensemble learning” — methods that 
generate many classifiers and aggregate their results. Two well-known methods are 
boosting (see, e.g., Shapire et al., 1998) and bagging Breiman (1996) of classification 
trees. In boosting, successive trees give extra weight to points incorrectly predicted 
by earlier predictors. In the end, a weighted vote is taken for prediction. In bagging, 
successive trees do not depend on earlier trees — each is independently constructed 
using a bootstrap sample of the data set. In the end, a simple majority vote is taken 
for prediction. Breiman (2001) proposed random forests, which add an additional 
layer of randomness to bagging. In addition to constructing each tree using a different 
bootstrap sample of the data, random forests change how the classification or 
regression trees are constructed. In standard trees, each node is split using the best 
split among all variables. In a random forest, each node is split using the best among 
a subset of predictors randomly chosen at that node. This somewhat counterintuitive 
strategy turns out to perform very well compared to many other classifiers, including 
discriminant analysis, support vector machines and neural networks, and is robust 
against overfitting (Breiman, 2001). In addition, it is very user-friendly in the sense 
that it has only two parameters (the number of variables in the random subset at each 
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node and the number of trees in the forest), and is usually not very sensitive to their 
values.  

2. The Random Forest algorithm  

The random forests algorithm (for both classification and regression) is as follows:  

1. Draw ntree bootstrap samples from the original data.  

2. For each of the bootstrap samples, grow an unpruned classification or 
regression tree, with the following modification: at each node, rather than 
choosing the best split among all predictors, randomly sample mtry of the 
predictors and choose the best split from among those variables. (Bagging can 
be thought of as the special case of random forests obtained when mtry = p, the 
number of predictors.)  

3. Predict new data by aggregating the predictions of the ntree trees (i.e., majority 
votes for classification, average for regression).  

An estimate of the error rate can be obtained, based on the training data, by the 
following:  

1.  At each bootstrap iteration, predict the data not in the bootstrap sample (what 
Breiman calls “out-of-bag”, or OOB, data) using the tree grown with the 
bootstrap sample.  

2. Aggregate the OOB predictions (On the average, each data point would be 
out-of-bag around 36% of the times, so aggregate these predictions). Calcuate 
the error rate, and call it the OOB estimate of error rate.  

Our experience has been that the OOB estimate of error rate is quite accurate, given 
that enough trees have been grown (otherwise the OOB estimate can bias upward; see 
Bylander (2002)). 

The Random Forest optionally produces two additional pieces of information: a 
measure of the importance of the predictor variables, and a measure of the internal 
structure of the data (the proximity of different data points to one another).  

Variable importance: This is a difficult concept to define in general, because the 
importance of a variable may be due to its (possibly complex) interaction with other 
variables. The random forest algorithm estimates the importance of a variable by 
looking at how much prediction error increases when (OOB) data for that variable is 
permuted while all others are left unchanged. The necessary calculations are carried 
out tree by tree as the random forest is constructed.  

proximity measure: The (i, j) element of the proximity matrix produced by Random 
Forest algorithm is the fraction of trees in which elements i and j fall in the same 
terminal node. The intuition is that “similar” observations should be in the same 
terminal nodes more often than dissimilar ones. The proximity matrix can be used to 
identify structure in the data (see Breiman, 2002). 
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3. Random Forest  using Scikit-Learn library 

Random Forest ensembles can be implemented from scratch, although this can be 
challenging for beginners. The scikit-learn Python machine learning library provides 
an implementation of Random Forest for machine learning. Random Forest is 
provided via the RandomForestRegressor and RandomForestClassifier classes. Both 
models operate the same way and take the same arguments that influence how the 
decision trees are created. Randomness is used in the construction of the model. This 
means that each time the algorithm is run on the same data, it will produce a slightly 
different model. When using machine learning algorithms that have a stochastic 
learning algorithm, it is good practice to evaluate them by averaging their 
performance across multiple runs or repeats of cross-validation. When fitting a final 
model, it may be desirable to either increase the number of trees until the variance of 
the model is reduced across repeated evaluations, or to fit multiple final models and 
average their predictions. Let’s take a look at how to develop a Random Forest 
ensemble for both classification tasks. 

 Building a Random Forest Classifier using Scikit-learn  
We will be using the IRIS flower dataset for this tutorial. It comprises the independent 
attributes sepal length, sepal width,  

petal length, petal width, and type of flowers. There are three species or classes: 
setosa, versicolor and virginia. We will be developing a RF classifier to classify the 
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flowers among any of the three groups based on the independent data values. The 
dataset is available in the scikit-learn library. 
Start by importing the datasets library from scikit-learn package, load the iris dataset 
and convert it into a pandas DataFrame object called ‘data’. 
In the mentioned dataset target values are encoded as 0: setosa, 1: versicolor, 2: 
virginica. Next, separate the columns into dependent and independent variables (or Y 
and X respectively).  
 
Then  
split the entire dataset into training and test set using the train_test_split() method 
from sklearn.model_selection. 

After splitting, train the RF model on the training set and perform predictions using 
the test set. 

After training, we can print the accuracy of the model based on actual and predicted 
values as follows. 

We can also print the classification report for the trained model using the 
classification_report  
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Module of scikit-learn. Classification report is a performance evaluation metric in 
machine learning. It shows the precision, recall, F1 Score, and support of the trained 
classifier. 
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Hands on Artificial Neural Network using Scikit-learn and Keras 
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Artificial Neural Network using Scikit-learn 

Step 1 - Loading the Required Libraries and Modules 
# Import required libraries 
import pandas as pd 
import numpy as np  
import matplotlib.pyplot as plt 
import sklearn 
from sklearn.neural_network import MLPClassifier 
from sklearn.neural_network import MLPRegressor 
 
# Import necessary modules 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
from math import sqrt 
from sklearn.metrics import r2_score 

Step 2 - Reading the Data and Performing Basic Data Checks 

df = pd.read_csv('/content/sample_data/diabetes.csv')  
print(df.shape) 
df.describe().transpose() 
 

 
 

Figure 1: output of df.describe().transpose() 
df.head(10) 
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Figure 2: output of df.head(10) 

 

Step 3 - Creating Arrays for the Features and the Response Variable 

target_column = ['Outcome']  
predictors = list(set(list(df.columns))-set(target_column)) 
df[predictors] = df[predictors]/df[predictors].max() 
df.describe().transpose() 
 

Step 4 - Creating the Training and Test Datasets 

X = df[predictors].values 
y = df[target_column].values 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, 
random_state=40) 

Step 5 - Building, Predicting, and Evaluating the Neural Network Model 

from sklearn.neural_network import MLPClassifier 
mlp = MLPClassifier(hidden_layer_sizes=(8,8,8), activation='relu', solver=
'adam', max_iter=500) 
mlp.fit(X_train,y_train) 
predict_train = mlp.predict(X_train) 
predict_test = mlp.predict(X_test) 
 
from sklearn.metrics import classification_report,confusion_matrix 
print(classification_report(y_train,predict_train)) 
 

 
Figure 3: Output of classification_report 
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Artificial Neural Network using Keras 

from numpy import loadtxt 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense 

 

Define the keras model 

model = Sequential() 
model.add(Dense(12, input_shape=(8,), activation='relu')) 
model.add(Dense(8, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 

Compile the keras model 

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accu
racy']) 
 

Fit the keras model on the dataset 

model.fit(X, y, epochs=50, batch_size=10) 
 

Evaluate the keras model 

_, accuracy = model.evaluate(X, y) 
print('Accuracy: %.2f' % (accuracy*100)) 
 

Handwritten Digit Recognition on MNIST dataset bold text bold text 

import tensorflow as tf 
from tensorflow import keras 
import matplotlib.pyplot as plt 
%matplotlib inline 
import numpy as np 
(X_train, y_train) , (X_test, y_test) = keras.datasets.mnist.load_data() 

Compile the keras model 

model = keras.Sequential([ 
    keras.layers.Dense(10, input_shape=(784,), activation='sigmoid') 
]) 
 
model.compile(optimizer='adam', 
              loss='sparse_categorical_crossentropy', 
              metrics=['accuracy']) 
 
model.fit(X_train_flattened, y_train, epochs=5) 
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Recurrent Neural Networks using Keras: 

Ease of use: the built-in keras.layers.RNN, keras.layers.LSTM, keras.layers.GRU 
layers enable you to quickly build recurrent models without having to make difficult 
configuration choices. 

Ease of customization: You can also define your own RNN cell layer (the inner part 
of the for loop) with custom behavior, and use it with the generic keras.layers.RNN 
layer (the for loop itself). This allows you to quickly prototype different research ideas 
in a flexible way with minimal code. 

Steps in implementing RNN using keras 

• Read the dataset from a given URL 
• Split the data into training and test sets 
• Prepare the input to the required Keras format 
• Create an RNN model and train it 
• Make the predictions on training and test sets and print the root mean 

square error on both sets 

• View the result 

Step 1, 2: Reading Data and Splitting Into Train and Test 

The following function reads the train and test data from a given URL and splits it 
into a given percentage of train and test data. It returns single-dimensional arrays for 
train and test data after scaling the data between 0 and 1 using MinMaxScaler from 
scikit-learn. 

from pandas import read_csv 
import numpy as np 
from keras.models import Sequential 
from keras.layers import Dense, SimpleRNN 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import mean_squared_error 
import math 
import matplotlib.pyplot as plt 
def get_train_test(url, split_percent=0.8): 
    df = read_csv(url, usecols=[1], engine='python') 
    data = np.array(df.values.astype('float32')) 
    scaler = MinMaxScaler(feature_range=(0, 1)) 
    data = scaler.fit_transform(data).flatten() 
    n = len(data) 
    # Point for splitting data into train and test 
    split = int(n*split_percent) 
    train_data = data[range(split)] 
    test_data = data[split:] 
    return train_data, test_data, data 
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Step 3: Reshaping Data for Keras 

# Prepare the input X and target Y 
def get_XY(dat, time_steps): 
    Y_ind = np.arange(time_steps, len(dat), time_steps) 
    Y = dat[Y_ind] 
    rows_x = len(Y) 
    X = dat[range(time_steps*rows_x)] 
    X = np.reshape(X, (rows_x, time_steps, 1))     
    return X, Y 

Step 4: Create RNN Model and Train 

def create_RNN(hidden_units, dense_units, input_shape, activation): 
    model = Sequential() 
    model.add(SimpleRNN(hidden_units, input_shape=input_shape, activat
ion=activation[0])) 
    model.add(Dense(units=dense_units, activation=activation[1])) 
    model.compile(loss='mean_squared_error', optimizer='adam') 
    return model 

Step 5: Compute and Print the Root Mean Square Error 

def print_error(trainY, testY, train_predict, test_predict):     
    # Error of predictions 
    train_rmse = math.sqrt(mean_squared_error(trainY, train_predict)) 
    test_rmse = math.sqrt(mean_squared_error(testY, test_predict)) 
    # Print RMSE 
    print('Train RMSE: %.3f RMSE' % (train_rmse)) 
    print('Test RMSE: %.3f RMSE' % (test_rmse))  
 

Step 6: View the Result 

# Plot the result 
def plot_result(trainY, testY, train_predict, test_predict): 
    actual = np.append(trainY, testY) 
    predictions = np.append(train_predict, test_predict) 
    rows = len(actual) 
    plt.figure(figsize=(15, 6), dpi=80) 
    plt.plot(range(rows), actual) 
    plt.plot(range(rows), predictions) 
    plt.axvline(x=len(trainY), color='r') 
    plt.legend(['Actual', 'Predictions']) 
    plt.xlabel('Observation number after given time steps') 
    plt.ylabel('Sunspots scaled') 
    plt.title('Actual and Predicted Values. The Red Line Separates The Tra
ining And Test Examples') 
Call required functions for implementing RNN 
sunspots_url = 'https://raw.githubusercontent.com/jbrownlee/Datasets/maste
r/monthly-sunspots.csv' 
time_steps = 12 
train_data, test_data, data = get_train_test(sunspots_url) 
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trainX, trainY = get_XY(train_data, time_steps) 
testX, testY = get_XY(test_data, time_steps) 
 
# Create model and train 
model = create_RNN(hidden_units=3, dense_units=1, input_shape=(time_steps,
1),  
                   activation=['tanh', 'tanh']) 
model.fit(trainX, trainY, epochs=20, batch_size=1, verbose=2) 
 
# make predictions 
train_predict = model.predict(trainX) 
test_predict = model.predict(testX) 
  
# Print error 
print_error(trainY, testY, train_predict, test_predict) 
  
#Plot result 
plot_result(trainY, testY, train_predict, test_predict) 
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Concepts of Artificial Neural Network: Perceptron, RNN, LSTM 
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What is a Perceptron? 

A Perceptron is an algorithm used for supervised learning of binary classifiers. Binary 
classifiers decide whether an input, usually represented by a series of vectors, belongs 
to a specific class. In short, a perceptron is a single-layer neural network. They consist 
of four main parts including input values, weights and bias, net sum, and an activation 
function. A perceptron model, in Machine Learning, is a supervised learning 
algorithm of binary classifiers. A single neuron, the perceptron model detects whether 
any function is an input or not and classifies them in either of the classes. Representing 
a biological neuron in the human brain, the perceptron model or simply a perceptron 
acts as an artificial neuron that performs human-like brain functions. A linear ML 
algorithm, the perceptron conducts binary classification or two-class categorization 
and enables neurons to learn and register information procured from the inputs. This 
model uses a hyperplane line that classifies two inputs and classifies them on the basis 
of the 2 classes that a machine learns, thus implying that the perceptron model is a 
linear classification model.  Invented by Frank Rosenblatt in 1957, the perceptron 
model is a vital element of Machine Learning as ML is recognized for its classification 
purposes and mechanism. The perceptron was first introduced by American 
psychologist, Frank Rosenblatt in 1957 at Cornell Aeronautical Laboratory and is a 
vital element of Machine Learning as ML is recognized for its classification purposes 
and mechanism.  

Rosenblatt was heavily inspired by the biological neuron and its ability to learn. 
Rosenblatt’s perceptron consists of one or more inputs, a processor, and only one 
output. 

 

A perceptron works by taking in some numerical inputs along with what is known 
as weights and a bias. It then multiplies these inputs with the respective weights(this is 
known as the weighted sum). These products are then added together along with the 
bias. The activation function takes the weighted sum and the bias as inputs and returns 
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a final output. A perceptron consists of four parts: input values, weights and a bias, a 
weighted sum, and activation function. 

Assume we have a single neuron and three inputs x1, x2, x3 multiplied by the 
weights w1, w2, w3 respectively as shown below, 

 

The idea is simple, given the numerical value of the inputs and the weights, there is a 
function, inside the neuron, that will produce an output. The question now is, what is 
this function? 

One function may look like 

 

This function is called the weighted sum because it is the sum of the weights and inputs. 
This looks like a good function, but what if we wanted the outputs to fall into a certain 
range say 0 to 1. 

We can do this by using something known as an activation function. An activation 
function is a function that converts the input given (the input, in this case, would be 
the weighted sum) into a certain output based on a set of rules. 

 

There are different kinds of activation functions that exist, for example: 

1. Hyperbolic Tangent: used to output a number from -1 to 1. 

2. Logistic Function: used to output a number from 0 to 1. 
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3. Since the range we are looking for is between 0 and 1, we will be using a 
Logistic Function to achieve this. 

4. Logistic Functions 

5. Logistical functions have the formula, 

 

Where the graph looks like, 

-  

Notice that g(z) lies between the points 0 and 1 and that this graph is not linear. This 
will allow us to output numbers that are between 0 and 1 which is exactly what we 
need to build our perceptron. 

Now we have almost everything we need to make our perceptron. The last thing we 
are missing is the bias. The bias is a threshold the perceptron must reach before the 
output is produced. So the final neuron equation looks like: 

Represented visually we see (where typically the bias is represented near the inputs), 

 

Represented visually we see (where typically the bias is represented near the inputs), 
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Notice that the activation function takes in the weighted sum plus the bias as inputs to 
create a single output. Using the Logistical Function this output will be between 0 and 
1. 

Why are perceptron's used? 

Perceptrons are the building blocks of neural networks. It is typically used for 
supervised learning of binary classifiers. This is best explained through an example. 
Let’s take a simple perceptron. In this perceptron we have an input x and y, which is 
multiplied with the weights wx and wy respectively, it also contains a bias. 

 

Let’s also create a graph with two different categories of data represented with red and 
blue dots. 

 

Notice that the x-axis is labeled after the input x and the y-axis is labeled after the 
input y. 

Suppose the goal was to separates this data so that there is a distinction between the 
blue dots and the red dots. How can we use the perceptron to do this? 

A perceptron can create a decision boundary for a binary classification, where a 
decision boundary is regions of space on a graph that separates different data points. 

Let’s play with the function to better understand this. We can say, 

wx = -0.5 
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wy = 0.5 

and b = 0 

Then the function for the perceptron will look like, 

0.5x + 0.5y = 0 

and the graph will look like, 

X 

Let’s suppose that the activation function, in this case, is a simple step function that 
outputs either 0 or 1. The perceptron function will then label the blue dots as 1 and the 
red dots as 0. In other words, 

if 0.5x + 0.5y => 0, then 1 

if 0.5x + 0.5y < 0, then 0. 

Therefore, the function 0.5x + 0.5y = 0 creates a decision boundary that separates the 
red and blue points. 

 

 

Overall, we see that a perceptron can do basic classification using a decision boundary. 
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What is Recurrent Neural Network (RNN)? 

Recurrent Neural Network is a generalization of feedforward neural network that has 
an internal memory. RNN is recurrent in nature as it performs the same function for 
every input of data while the output of the current input depends on the past one 
computation. After producing the output, it is copied and sent back into the recurrent 
network. For making a decision, it considers the current input and the output that it has 
learned from the previous input. 

Unlike feedforward neural networks, RNNs can use their internal state (memory) to 
process sequences of inputs. This makes them applicable to tasks such as unsegmented, 
connected handwriting recognition or speech recognition. In other neural networks, all 
the inputs are independent of each other. But in RNN, all the inputs are related to each 
other. 

 

First, it takes the X(0) from the sequence of input and then it outputs h(0) which 
together with X(1) is the input for the next step. So, the h(0) and X(1) is the input for 
the next step. Similarly, h(1) from the next is the input with X(2) for the next step 
and so on. This way, it keeps remembering the context while training. 

The formula for the current state is 

 

Applying Activation Function: 

 

W is weight, h is the single hidden vector, Whh is the weight at previous hidden 
state, Whx is the weight at current input state, tanh is the Activation funtion, that 
implements a Non-linearity that squashes the activations to the range[-1.1] 

Output: 

 

Yt is the output state. Why is the weight at the output state. 
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More about RNNs: The input and output of standard ANNs are interdependent. 
However, the output of an RNN is reliant on the previous nodes in the sequence. Each 
neuron in a feed-forward network or multi-layer perceptron executes its function with 
inputs and feeds the result to the next node. 

RNN works on the principle of saving the output of a particular layer and feeding this 
back to the input in order to predict the output of the layer. 

Below is how you can convert a Feed-Forward Neural Network into a Recurrent 
Neural Network: 

 

Fig: Simple Recurrent Neural Network 

As the name implies, recurrent neural networks have a recurrent connection in which 
the output is transmitted back to the RNN neuron rather than only passing it to the 
next node.Each node in the RNN model functions as a memory cell, continuing 
calculation and operation implementation. 

If the network's forecast is inaccurate, the system self-learns and performs 
backpropagation toward the correct prediction. 

An RNN remembers every piece of information throughout time. It is only effective 
in time series prediction because of the ability to recall past inputs. This is referred to 
as long short-term memory. Recurrent neural networks combine with convolutional 
layers to widen the effective pixel neighborhood. 

Types of RNN 

RNNs are categorized based on the four network sequences, namely, 

• One to One Network 

• One to Many Network 

• Many to One Network 

• Many to Many Network 
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RNN: One to One Model 

The one-to-one RNN is a typical sequence in neural networks, with only one input 
and one output. Application – Image classification 

RNN: One to Many Model 

One to Many network has a single input feed into the node, producing multiple 
outputs. Application – Music generation, image captioning, etc. 

RNN: Many to One model 

Many to One architecture of RNN is utilized when there are several inputs for 
generating a single output. Application – Sentiment analysis, rating model, etc. 

RNN: Many to Many Model 

Many to Many RNN models, as the name implies, have multiple inputs and produce 
multiple outputs. This model is also incorporated where input and output layer sizes 
are different. Application – Machine translation. 

Advantages of Recurrent Neural Network 

• RNN can model sequence of data so that each sample can be assumed to be 
dependent on previous ones. 

• Recurrent neural networks are even used with convolutional layers to extend 
the effective pixel neighbourhood. 

Disadvantages of Recurrent Neural Network 

• Gradient vanishing and exploding problems. 

• Training an RNN is a very difficult task. 

• It cannot process very long sequences if using tanh or relu as an activation 
function 

In a nutshell, RNN is defined as a neural network with some internal state updated at 
each step. Hidden states are employed to use prior information during output sequence 
prediction. Its applications include speech recognition, language modeling, machine 
translation, and the development of chatbots. 

Long Short Term Memory (LSTM) 

As we discussed RNN are not able memorize data for long time and begins to forget 
its previous inputs. To overcome this problem of vanishing and exploding gradient 
LSTM is used. They are used as solution for short term memory learning. Also in RNN 
when a new information is added RNN completely modifies the existing information. 
RNN is not able to distinguish between important or not so important information. 
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Whereas in LSTM there is small modification in existing information when a new 
information is added because LSTM contains gate which determine the flow of 
information. 

 

The gates decide which data is important and can be useful in future and which data 
has to be erased. The three gates are input gate, output gate and forget gate. 

 

• Forget Gate: This gate decide which information is important and should 
be stored and which information to forget. It removes the non important 
information from neuron cell. This results in optimization of performance. 
This gate takes 2 input- one is the output generated by previous cell and 
other is input of current cell. Following required bias and weights are 
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added and multiplied and sigmoid function is applied to the value. A value 
between 0 and 1 is generated and based on this we decide which 
information to keep. If value is 0 the forget gate will remove that 
information and if value is 1 then information is important and has to be 
remembered. 

 

• Input Gate: This gate is used to add information to neuron cell. It is 
responsible of what values should be added to cell by using activation 
function like sigmoid. It creates an array of information that has to be 
added. This is done by using another activation function called tanh. It 
generates a value between -1 and 1. The sigmoid function act as a filter 
and regulate what information has to be added in cell. 

 

• Output Gate: This gate is responsible for selecting important information 
from current cell and show it as output. It creates a vector of values using 
tanh function which ranges from -1 to 1. It uses previous output and 
current input as a regulator which also includes sigmoid function and 
decides which values should be shown as output. 

Squashing / Activation Functions in LSTM 

1. Logistic (sigmoid): Outputs range from 0 to 1 

2. Hyperbolic Tangent (tanh): Outputs range from -1 to 1. 

More about Long short-term memory (LSTM) in machine learning 

Long Short-Term Memory (LSTM) networks are a modified version of recurrent 
neural networks, which makes it easier to remember past data in memory. The 
vanishing gradient problem of RNN is resolved here. LSTM is well-suited to classify, 
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process and predict time series given time lags of unknown duration. It trains the model 
by using back-propagation.  

• LSTM is a type of RNN with higher memory power to remember the outputs 
of each node for a more extended period to produce the outcome for the next 
node efficiently. 

• LSTM networks combat the RNN's vanishing gradients or long-term 
dependence issue. 

• Gradient vanishing refers to the loss of information in a neural network as 
connections recur over a longer period. 

• In simple words, LSTM tackles gradient vanishing by ignoring useless 
data/information in the network. 

• For example, if an RNN is asked to predict the following word in this phrase, 
"have a pleasant _______," it will readily anticipate "day." 

• The input data is very limited in this case, and there are only a few possible 
output results 
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Introduction: 

Deep Learning (DL) is a particular kind of machine learning (subset of machine 
learning) that achieves great power and flexibility by learning to represent the world 
as a nested hierarchy of concepts. Deep learning is an important element of data 
science, which includes statistics and predictive modelling. Deep learning allows 
machines to learns patterns in an automated nature from a very large number of 
datasets. Recently, the deep learning technique have gained much popularity in the 
area of computer vision and neural machine translation. Fundamentally, artificial 
neural networks (ANNs) clubbed with multi-level representation learning forms the 
backbone of the deep learning concepts. Deep learning methods aim at learning 
feature hierarchies with features from higher levels of the hierarchy formed by the 
composition of lower level features (LeCun et al., 2015). The idea of learning the 
right representation for the data provides one perspective on deep learning. Another 
perspective on deep learning is that depth allows the computer to learn a multi-layer 
network. Deep learning techniques consists of computational models that applies 
multiple processing layers to learn patterns of data with multiple levels of abstraction 
(LeCun et al., 2015). Each layer of processing units can be used to extract 
progressively higher-level, abstract features from raw dataset under study in parallel 
with others. Automatically learning features at multiple levels of abstraction allow a 
machine to learn complex functions mapping the input to the output directly from 
data, without depending completely on human-crafted features. To achieve an 
acceptable level of performance, the deep learning techniques require access to 
immense amounts of training data and processing power.  

Technique of making 
Intelligent machines 
and programs

Artificial
Intelligence

1950’s

Ability of machine 
to learn without 
being explicitly 
programmed

Machine
Learning

Learning the 
patterns from 
large dataset

Deep
Learning

1980’s 2010’s

Chronology of AI, ML and DL 
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Deep Learning techniques:  

There are several types of deep learning techniques available now-a-days such as 
Multi-Layer Perceptron (MLPs), Convolutional Neural Networks (CNNs), Deep 
Recurrent Neural networks (RNNs) & Long Short-term Memory (LSTM)”networks 
etc. 

Multi-Layer Perceptron (MLP): MLPs are the most traditional types of deep learning  
architectures. Every element of a previous layer, is connected to every element of the 
next layer. Such layer is called dense layer or fully connected layer. Fell out of favor, 
in part because they are hard to train. 

Convolution Neural Network (CNN): CNNs are the advanced type of feed forward 
neural network. The CNNs takes a fixed size inputs, process it using multiple 
processing units and generates fixed-size outputs. Mostly used in computer vision 
applications for object detection, classification and semantic segmentation. Generally, 
appropriate for image and video processing tasks. 

Recurrent Neural Network (RNN): The type of feed forward neural networks 
extended to include feedback connections within. The network use its internal 
memory to process arbitrary sequence of inputs, hence can handle arbitrary 
input/output length. RNNs are mostly useful for time series data where features 
representing the past are assumed to have bearing on the future. Generally, ideal for 
text and speech analysis. 

Deep learning frameworks: 

Building the deep learning solution in largescale is quite difficult due to huge 
computational complexity of the deep learning models. There exists several deep 
learning frameworks available for building deep learning solutions. These 
frameworks offers a higher level of abstraction and simplify potentially complex 
network programming. The frameworks are: 

a. TensorFlow: TensorFlow (also called as TensorFlow engine) is the most 
widely used platform for machine learning and deep learning applications. It 
is a free and open-source software library developed by Google team in 2015 
for research and analysis in the field of AI and ML. It provides a collection of 
workflows with intuitive, high-level APIs for both beginners and experts to 
create machine learning models in numerous languages (Python/R/Java). It 
has a comprehensive, flexible ecosystem of tools, libraries, and community 
resources that lets researchers push the state-of-the-art in ML and developers 
easily build and deploy ML-powered real world applications. 

b. Keras: Keras is the official high-level deep learning API for TensorFlow. It is 
developed by Google to make the implementation of TensorFlow simple and 
productive. Keras is open source, free to use and implement and written in 
python programming language. Keras is embedded in TensorFlow and can be 
used to perform deep learning fast as it provides inbuilt modules for all neural 
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network computations. Keras is relatively easy to learn and work with because 
it provides a python frontend with a high level of abstraction while having the 
option of multiple back-ends for computation purposes. 

c. PyTorch: PyTorch is an open source machine learning and deep learning 
framework developed by the Facebook AI Research (FAIR) team in 2017. 
PyTorch is based on the Python programming language and the Torch library. 
It has been designed to provide greater flexibility and increased speed for deep 
neural network implementation. Presently, PyTorch is the most favoured 
library for the ML and DL researchers and practitioners worldwide. 

Deep learning network development flow:  

A general framework of any deep learning network for any problem domain follows 
as series of steps as provided below: 

a. Problem statement formulation  
b. Collection and preparation of dataset 
c. Selection of a deep learning framework for network development 
d. Designing the architecture of the deep learning network 
e. Training the network 
f. Performance Evaluation of the model 
g. Saving the parameters and architecture of network in a binary files 
h. Network implementation 

Benefits of Deep learning: 

Deep learning techniques have several advantages over the traditional machine 
learning methods include: 

a. Automatic feature learning: Deep learning algorithms can automatically learn 
the features from the raw data, that means there is no requirement of hand-
engineered feature extraction. This is particularly useful for tasks where the 
features are difficult to define, such as image recognition. 

b. Handling large and complex data: Deep learning techniques can efficiently 
handle large and complex datasets which would be very difficult for traditional 
machine learning models to process.  

c. Handling non-linear relationships: Deep learning can uncover non-linear 
relationships in data that would be difficult to detect through traditional 
methods. 

d. Handling structured and unstructured data: Deep learning algorithms can 
handle both structured and unstructured data such as images, text, and audio. 
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e. Handling missing data: Deep learning algorithms can handle missing data and 
still make predictions, which is useful in real-world applications where data is 
often incomplete. 

f. Handling sequential data: Deep learning algorithms such as Recurrent Neural 
Networks (RNNs) and Long Short-term Memory (LSTM) networks are 
particularly suited to handle sequential data such as time series, speech, and 
text. These algorithms have the ability to maintain context and memory over 
time, which allows them to make predictions or decisions based on past inputs. 

g. Scalability: Deep learning models can be easily scaled to handle an increasing 
amount of data and can be deployed on cloud platforms and edge devices. 

h. Improved generalization: Deep learning models can generalize well to new 
situations or contexts, as they are able to learn abstract and hierarchical 
representations of the data. 

Limitations of Deep learning: 

In addition to the advantages, deep learning has some disadvantages too which are 
discussed as follows: 

a. High computational cost: Training deep learning models requires significant 
computational resources, including powerful GPUs and large amounts of 
memory. This can be costly and time-consuming.  

b. Dependence on data quality: Deep learning algorithms rely on the quality of 
the data they are trained on. If the data is noisy, incomplete, or biased, the 
model's performance will be negatively affected. 

c. Dependency on data quantity: Deep learning algorithms require a large 
quantity of data to be trained on. If the data is not sufficient, the model's 
performance will be affected. 

d. Black box models: some deep learning models are considered as "black-box" 
models, as it is difficult to understand how the model is making predictions 
and identifying the factors that influence the predictions. 

e. Dependency on the domain expertise: Deep learning requires a good 
understanding of the domain and the problem you are trying to solve. If the 
domain expertise is lacking, it can be difficult to formulate the problem and 
select the appropriate algorithm. 

Application of Deep Learning: 

The Deep learning concept has a wide range of applications across multiple sector 
and areas such as: 

a. Computer vision: Deep learning is used several computer vision related tasks 
such as image and video recognition, object detection, semantic segmentation, 
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etc. Applications include self-driving cars, security cameras, face recognition, 
Disease-pest detection etc. 

b. Natural language processing: Deep learning is used in natural language 
understanding, machine translation, sentiment analysis, and other natural 
language processing tasks. Applications include chatbots, virtual assistants, 
and language-based search engines. 

c. Speech recognition: Deep learning is used in speech recognition, voice 
identification, and voice synthesis. Applications include voice-controlled 
assistants, voice-enabled devices and voice-controlled robots. 

d. Predictive analytics: Deep learning is used to analyze historical data and make 
predictions about future events. Applications include fraud detection, 
customer churn prediction, and demand forecasting. 

e. Recommender systems: Deep learning is used to analyze patterns in data to 
recommend items to users. Applications include movie and music 
recommendations, news recommendations, and product recommendations. 

f. Marketing: Deep learning is used to analyze customer data, to predict 
customer behavior and to personalize marketing campaigns. Applications 
include customer segmentation, customer lifetime value prediction, and 
personalization 

g. Robotics: Deep learning is used to enable robots to learn from experience and 
adapt to their environment. Applications include autonomous vehicles, 
drones, and industrial robots. 

h. Cybersecurity: Deep learning is used to detect patterns in network traffic, and 
to identify and respond to cyber threats. Applications include intrusion 
detection and prevention, and malware detection. 
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Convolutional Neural Networks (CNNs or ConvNets): 

Convolutional Neural Networks (CNNs or ConvNets) are the Deep Learning-based 
models universally used for Computer Vision task. The CNNs are the advanced 
version of feed forward Artificial Neural Networks comprised of artificial neurons 
with learnable weights vectors and biases (Haque et al., 2022a). The concept of the 
CNNs/ConvNets were evolved from the Biological Visual Cortex. Experimental 
findings of Hubel and Wiesel (1958-59) reported that biological visual cortex consists 
of some neurons having small local receptive fields and some neurons have larger 
receptive fields. Study of the Visual Cortex inspired the development of Neocognitron 
concept in 1980 (Fukushima, 1980). CNNs have managed to achieve superhuman 
performance on very complex visual tasks. Applied on major computer vision 
problems such as image classification, object detection, segmentation etc. Moreover, 
CNNs are also successful at other tasks, such as voice recognition, natural language 
processing (NLP), Recommender systems, Time series analysis etc. A CNN 
algorithm can receive raw pixels of an image as inputs, performs dot products on the 
pixels using a set of filters then follows with non-linear function and finally generates 
the classification scores that are used to differentiate one image from another. The 
CNNs are generally comprised of two modules: feature extraction module and 
classifier module which are discussed below (Haque et al., 2022b): 

Feature extraction module:  

The feature extraction module of CNN extracts promising and inherent 
features/patterns directly from the raw images. Then, generates a set of feature maps 
or activation maps in a hierarchical manner. It enables the network to learns semantic 
information of the images from a series of feature/activation maps. Generally there 
are two operations involved: Convolution and pooling (subsampling) operations 
which are discussed below:  

Convolution operation: The convolution layer is the first and most significant layer 
in the convolutional neural networks. It allows the network to learn distinguishable 
visual features (local patterns or low-level features) such as oriented edges, curves, 
corners, endpoints, textures etc. from the input images (LeCun et al., 1998). These 
learned features are then combined in the following layers for detecting the higher-
order features in the images. The convolution operation extracts the features by 
convolving a set of filters (or kernel or weight matrices) through the image pixels and 

Conventional outlook of CNNs/ConvNets 
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generates a set of feature maps. Each unit of a feature map in the current layer is 
associated to the one or more local receptive fields of the previous layer’s feature 
maps through a group of filters or kernels or weight matrices (LeCun et al., 2015). 
The main advantages of convolution operation are:  

• The convolution operation provides sparse connectivity in network as the 
input pixels of the receptive field are connected only to the respective 
kernels 

• In convolution, shared parameters are used across the layers i.e. one 
parameter set (kernel matrix) is learned for every location of the image 

• Convolution makes the network translation invariance for the input images 

The units in a particular feature map of an image share the same set of filters (or 
weight matrices), whose same receptive fields are situated at different locations in 
that image (LeCun et al., 1998). The local weighted sum of the input image pixels and 
the filters (weight matrices) is passed through mapping functions that are non-linear 
in nature. In CNNs, generally rectified linear unit (ReLU) functions are used as the 
activation functions. ReLU is actually a non-linear function that acts in a linear way 
to learn the complex patterns in the data. The ReLU function activates or fires an input 
node if the value of the node is above or below a particular threshold value. ReLU 
outputs a zero, if the value of input node is below the threshold value and whenever 
the input values rise above the threshold value, it will act linearly with the values of 
the input node. The feature maps are calculated using the formula (1)- 

 

 

where, L denotes the Lth layer of the network,  !!"  is the output of the jth feature map 
at Lth layer, "#!

" represents the convolution kernel of the layer,  #! denotes the no. of 
input feature maps and f(.) denotes the ReLU activation function that is defined by 
the formula (2)- 
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where, !! is the jth feature map of the network. The use of ReLU in deep CNNs has 
made the training speed of the network faster several times than the other activation 
functions (Krizhevsky et al., 2012).  

Pooling Layer: Pooling operation is a subsampling process where the input feature 
maps are down-sampled. This operation reduce the computational load, the memory 
usage, and the number of parameters (thereby limiting the risk of overfitting) of the 
network. It makes the representations in the feature maps smaller and more 
manageable. Pooling layer is connected to the outputs of a limited number of neurons 
in the previous layer, located within a small rectangular receptive field (Haque et al., 
2022c). It operates upon each feature map separately to create a new set of pooled 
feature maps. In convolutional neural network, the most commonly used pooling 
technique is max-pool in which a max-filter is applied over a non-overlapping region 
in the feature maps. The max-pool operation reduces the spatial resolution of the 
feature maps which in turn imposes more insensitivity towards the shift or distortion 
variations. Therefore, the pooling operation shrinks the no. of learnable parameters of 
the network and reduces the computational load in the resources. The convolution and 
Maxpooling operation together act as the automated feature extractor for the 
convolutional neural networks. The pooling layer also introduces some level of 
invariance to small translations in the feature maps such as rotations, scaling, 
transformations.  
 

Classifier module:  

The classifier module is the part of the network that actually classifies the learned 
feature maps into respective classes. In CNN, the classifier module is implemented 
by one or more feed forward neural network (fully connected) layer also known as 
fully connected layer (fc layer) 

Fully connected Layer (fc layer): Fully Connected layer (or fc layer) of any CNN 
model typically resembles the architecture of the artificial neural networks. The fc 
layers are generally composed of one input layer, one or more hidden layers and one 
output layer. In this fc layer, each unit of the current layer is associated to each and 
every unit of the immediate next layer in the network. The feature maps that are 
generated from the convolution and max-pool layers, are primarily 2-dimentional 
matrices and get flattened to a 1-dimentional vector of features before input to the fc 

Maxpooling operation in feature maps 
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layer of the CNNs. The last layer in the fc layer contains the equal number of modes 
to the total number of classes considered in the classification problem.  

 

Loss Function in CNNs: 

The loss function is a tool for the machines to optimize the pattern-learning process 
from the datasets. This function determines how well the algorithm has modelled with 
the dataset. If the curve of the loss function has an increasing trend then the predictions 
are off and if it is having decreasing trend then the predictions are pretty good (Hennig 
and Kutlukaya, 2007). The loss function is responsible for reducing the errors in the 
network with the help of some optimization function. The loss functions are of 
generally two types: Regression loss and Classification loss. Regression loss deals 
with the real-valued quantities and having several metrics such as mean absolute error 
(MAE), mean square error (MSE), etc. The classification loss predicts an output from 
a set of finite categorical values. The popular loss functions for classification 
problems are binary cross-entropy, categorical cross-entropy, etc. In this experiment, 
categorical cross-entropy function was used to perform the multi-class classification. 
It is the most popular and most commonly used loss function. The cross-entropy loss 
curve shows an increasing trend if the predicted probability value diverges from the 
true label. An important aspect of the categorical cross-entropy loss is that it penalizes 
the predictions heavily when these are confident but wrong. The categorical cross-
entropy is defined by the following formula (Eq. 3)- 

4567789:56;<=677 = 	−(?#(@AB(?C#) + (1 − ?#)@AB	(1 − ?C#)) 

Where, ?# is the true class label of the ith variable in the test data and ?C# is the predicted 
class label of the ith variable in the test data and #EAFFGHIEAJ?KAFF is the calculated 
loss of the model. 

Optimization function in CNNs 

An optimization function is a function that finds a set of input parameters to a function 
within an allowed set which causes the function to give maximum or minimum output. 
The word “Optimization” comes from the root word  “optimal”, which means the best. 
When we are optimizing something, we are trying or make it ‘best’ or near to best 
(Kochenderfer and Wheeler, 2019). An optimization algorithm compares the 
solutions obtained from repeated executions till an optimum or a satisfactory solution 
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is achieved. The optimization algorithms are categorized into two types viz. 
deterministic optimization algorithms and stochastic optimization algorithms. The 
deterministic algorithm uses pre-specified rules for generating the optimal solution 
for the given problem and the stochastic optimization algorithms are probabilistic in 
nature with probabilistic translation rules for generating the optimal solution of the 
problem (Engelbrecht, 2007). In this study, two most widely used optimization 
algorithm such as Stochastic Gradient Descent and Adam were used.  

a. Stochastic gradient descent (SGD): Stochastic gradient descent (SGD) algorithm 
is the probabilistic approximation of the well-known algorithm gradient descent. It is 
an iterative procedure that applies appropriate smoothness properties such as 
differentiability or sub-differentiability for optimizing any function. SGD performs 
the parameter-updates for each training data having a data !# with label ?# by using 
the formula in eq- 4: 

! = #. ∇!	'(!; *"; +") 
SGD deals with the problem of redundancy by performing the parameter-updates one 
at a time and that makes it faster than the other approaches (Ketkar, 2017). In SGD, 
high variance frequent parameter updates cause deliberate fluctuations in the 
objective function and enables to reach to potentially better local minima solutions 
(Bottou, 2012). 

b. Adam: In recent years, the Adam optimization algorithm gained much wider 
adoption for deep learning applications in the area of computer vision. It is the 
extended version of the stochastic gradient descent algorithm. The name ‘Adam’ has 
been derived from the term ‘adaptive moment estimation’ because it computes the 
learning rates for network weights by estimating the first and second order moments 
of the gradient (Kingma and Ba, 2014). The learning rate in Adam is adaptive in 
nature where individual learning rates are computed for each network parameters. The 
Adam algorithm combines the best characteristics from two extended SGD algorithms 
such as the AdaGrad and RMSprop algorithm. Adam computes the exponential 
moving average of the gradient and squared gradients like the AdaGrad algorithm and 
applies the squared gradients to scale the learning rate like the RMSprop algorithm 
(Goodfellow et al., 2016). 

Softmax Function: 

Softmax function is the most widely used activation function in deep learning models 
for classification problems. It provides a vector of values that represents the 
probability distribution over the total output class. The softmax function converts the 
numeric output of the network’s last layer into probability values by taking exponents 
of each network output and normalizing each number by the sum of the exponents. In 
any CNN model, the softmax function is added in the final layer of the network. The 
softmax function are used in a classification model having mutually-exclusive classes. 
The softmax function can be defined the formula provided in the equation Eq. 5- 

(4) 
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	(0 = 1, 2, …5) 

Where, ?# is the L() numeric output of the last convolution layer, % is the number of 
kernels/filters in the last convolution layer. 
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Image Classification/Recognition: 

Image classification (or Image recognition) is the way of recognizing the instances in 
the image as a whole and assigning a class or label to the image. It’s a one of most 
important subdomain of computer vision. The main aim is to categorize all the pixels 
of a digital image into one of the several classes. The image classification involves 
pre-processing of images, feature extraction and training, and classifying into 
predefined classes. Now-a-days, the CNNs have become the de-facto techniques for 
image classification/recognition tasks. 

Fashion MNIST Dataset 

Recently, Zalando research published a new dataset, which is very similar to the well-
known MNIST database of handwritten digits. The dataset is designed for machine 
learning classification tasks and contains in total 60,000 training and 10,000 test 
images (grey scale) with each 28x28 pixel. Each training and test case is associated 
with one of ten labels (0–9). Up till here Zalando’s dataset is basically the same as the 
original handwritten digits data. However, instead of having images of the digits 0–9, 
Zalando’s data contains (not unsurprisingly) images with 10 different fashion 
products. Consequently, the dataset is called Fashion-MNIST dataset. 
The 10 different class labels are: 

• 0 T-shirt/top 
• 1 Trouser 
• 2 Pullover 
• 3 Dress 
• 4 Coat 
• 5 Sandal 
• 6 Shirt 
• 7 Sneaker 
• 8 Bag 
• 9 Ankle boot 

 

Implementation of CNN for image classification 

In this section, a simple image classification model will developed using tensorflow, 
Keras framework using the Fashion MNIST dataset. Therefore, there are several steps 
that are followed during image classification which are provided below: 

 



 Python for Artificial Intelligence in Agriculture 

 176 

Step 1: Import Libraries 

import numpy as np  
import matplotlib.pyplot as plt 
import seaborn as sns 
import tensorflow as tf 
import keras 
 

Step 2: Load data 

(X_train, y_train), (X_test, y_test)=tf.keras.datasets.fashion_mnist.load_
data() 
#print the shape of data 
X_train.shape,y_train.shape , X_test.shape,y_test.shape 
#X_train - NumPy array of grayscale image data with shapes (60000, 28, 28)
, containing the training data. 
#y_train - NumPy array of labels (integers in range 0-
9) with shape (60000,) for the training data. 
#X_test - NumPy array of grayscale image data with shapes (10000, 28, 28),
 containing the test data. 
#y_test - NumPy array of labels (integers in range 0-
9) with shape (10000,) for the test data. 
#check the data 
X_train[0] 
y_train[0] 
 
#classes of the dataset 
class_labels = [“T-shirt/top”, “Trouser”, “Pullover”, “Dress”, “Coat”, 
“Sandal”, “Shirt”, “Sneaker”, “Bag”, “Ankle boat”] 
 
#show training images  
plt.figure(figsize=(10,10)) 
j=1 
for  i in np.random.randint(0,1000,9): 
  plt.subplot(3,3,j);j+=1 
  plt.imshow(X_train[i],cmap='Greys') 
  plt.axis('off') 
  plt.title('{} / {}'.format(class_labels[y_train[i]],y_train[i])) 
 
#add one more dimension to the dataset as input to CNN have three 
dimensions 
X_train=np.expand_dims(X_test,axis=1) 
X_test  = np.expand_dims(X_test,-1) 
 
#Feature Scaling (Normalise the data) 
X_train = X_train/255 
X_test= X_test/255 
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#Split the training data randomly in validation and training data (20% as 
validation and 80% as training data) 
 
from sklearn.model_selection import  train_test_split 
X_train,X_Validation,y_train,y_Validation=train_test_split(X_train,y_train
,test_size=0.2,random_state=2023) 
 
Step 3: Building the CNN model 
 
model=keras.models.Sequential([ 
                         
keras.layers.Conv2D(filters=32,kernel_size=3,strides=(1,1),padding='valid'
,activation='relu',input_shape=[28,28,1]), 
                         keras.layers.MaxPooling2D(pool_size=(2,2)),  
                         keras.layers.Conv2D(filters=32,kernel_size=3, 
strides=(1,1),activation='relu'), 
                         keras.layers.MaxPooling2D(pool_size=(2,2)), 
                         keras.layers.Flatten(), 
                         keras.layers.Dense(units=128,activation='relu'), 
                         keras.layers.Dropout(0.3), 
                         keras.layers.Dense(units=10,activation='softmax') 
]) 
 
# we have created the model with 2 convolution, 2 max pooling and 1 dense 
layer with 128 neuron and 1 softmax layer with 10 nodes.  
 
#Check the summary of the developed model 
model.summary() 

 
#Compile the model with Adam optimizer with learning rate = 0.001 and 
sparse_categrical_crossentropy as loss function 
 
model.compile(optimizer=keras.optimizers.Adam(lr=0.001),loss='sparse_categ
orical_crossentropy',metrics=['accuracy']) 
#Fit the model on the training and validation data with parameter epoch 
and batch size 
 
model.fit(X_train,y_train,epochs=3,batch_size=512,verbose=1,validation_dat
a=(X_Validation,y_Validation)) 
 
#Plot the accuracy and loss curve  
 
def accuracy_loss_plots(model): 
    fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize=(12,5)) 
    ax1.plot(model.history.history['accuracy'], label='Training accuracy') 
    ax1.plot(model.history.history['val_accuracy'], label='Validation accu
racy') 
    ax1.set_title('Accuracy Curve') 
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    ax1.set_xlabel('Epoch') 
    ax1.set_ylabel('Accuracy') 
    #ax1.set_ylim(0,1) 
    ax1.legend() 
 
    ax2.plot(model.history.history['loss'], label='Training loss') 
    ax2.plot(model.history.history['val_loss'], label='Validation loss') 
    ax2.set_title('Loss Curve') 
    ax2.set_xlabel('Epoch') 
    ax2.set_ylabel('Loss') 
    #ax2.set_ylim(0,1) 
    ax2.legend(); 
 
accuracy_loss_plots(model) 
 
#storing predictions in variable y_pred which gives the probability value 
the predicted class. 
 
y_pred = model.predict(X_test) 
 
#evaluating model on test set to check the loss and accuracy on the test 
data 
model.evaluate(X_test, y_test) 
 
 
#Display the random images with actual and predicted label. 
plt.figure(figsize=(12,12)) 
  
j=1 
for i in np.random.randint(0, 1000,9): 
  plt.subplot(3,3, j); j+=1 
  plt.imshow(X_test[i].reshape(28,28), cmap = 'Greys')  
  plt.title('Actual = {} / {} \nPredicted = {} / {}'.format(class_labels[y
_test[i]], y_test[i], class_labels[np.argmax(y_pred[i])],np.argmax(y_pred[
i]))) 
  plt.axis('off') 
 
#classification report and confusion matrix 
from sklearn.metrics import confusion_matrix 
y_pred_labels = [ np.argmax(label) for label in y_pred ] 
cm = confusion_matrix(y_test, y_pred_labels) #normalize='true' 
 
from sklearn.metrics import classification_report 
cr= classification_report(y_test, y_pred_labels, target_names=class_labels
) 
print(cr) 
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sns.heatmap(cm, annot=True, fmt='d',xticklabels=class_labels, yticklabels=
class_labels) 
plt.title('Fashion MNIST Confusion Matrix') 
plt.ylabel('Actual label') 
plt.xlabel('Predicted label') 
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Digital, Image, Processing are three important words; which means processing of 
the Image which is Digital in nature by a Digital Computer using algorithms. 
Motivation of Digital Image Processing: 

1. Improvement of pictorial information 

2. Information can be extracted  

3. Efficient Storage, Security and Transmission 

Basics of Digital Image  
An image may be defined as a two-dimensional function, where x and y are spatial 
(plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called 
the intensity or gray level of the image at that point. Each element f(x,y) at location 
(x,y) is called a Pixel.  Ex: f(1,1) =130 ; f(1,1) is pixel location and 130 is pixel 
intensity value. 
Digital Image Representation in Computer: 
A digital image is the composition of individual pixels or picture elements. The pixels 
are arranged in the form of row and column to form a picture area. The number of 
pixels in an image is a function of the size of the image and number of pixels per unit 
length (e.g., inch) in horizontal as well as vertical direction. 

  
 
The size of the image is defined as the total number of pixels in the horizontal 
direction times the total number of pixels in the vertical direction (512 x 512,640 x 
480, or 1024 x 768). 
Resolution 
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The resolution can be defined in many ways. Such as pixel resolution, spatial 
resolution, temporal resolution, spectral resolution. Out of which we are going to 
discuss pixel resolution. You have probably seen that in your own computer settings, 
you have monitor resolution of 800 x 600, 640 x 480 etc. In pixel resolution, the 
term resolution refers to the total number of count of pixels in a digital image. For 
example. If an image has M rows and N columns, then its resolution can be 
defined as M X N. 
If we define resolution as the total number of pixels, then pixel resolution can be 
defined with set of two numbers. The first number the width of the picture, or the 
pixels across columns, and the second number is height of the picture, or the pixels 
across its width. We can say that the higher is the pixel resolution, the higher is the 
quality of the image. 
Bit depth refers to the color information stored in an image. The higher the bit depth 
of an image, the more colors it can store. The simplest image, a 1 bit image, can only 
show two colors, black and white. That is because the 1 bit can only store one of two 
values, 0 (white) and 1 (black). An 8 bit image can store 256 possible colors, while a 
24 bit image can display over 16 million colors. As the bit depth increases, the file 
size of the image also increases because more color information has to be stored for 
each pixel in the image.  
Image Color 
Binary Image– The binary image as its name suggests, contain only two pixel 
elements i.e 0 & 1,where 0 refers to black and 1 refers to white. This image is also 
known as Monochrome. 
Grayscale Image- In this image format, each pixel can take value between 0 and 
number of grayscales.  These images appear like normal black and white photographs. 
These images can have 256 shades of grey. Humans can distinguish into 40 shades of 
grey . 
Color Image (RGB)- Color images are similar to grey scale images except that there 
are three bands/channels corresponding to Red, Green and Blue. Each pixel has three 
values associated with it. Image color can also be represented as HSV- Hue, 
Saturation and Value(Intensity) of the image.  
8 bit COLOR FORMAT– It is the most famous image format. It has 256 different 
shades of colors in it and commonly known as Grayscale Image. In this format, 0 
stands for Black, and 255 stands for white, and 127 stands for gray. 
16 bit COLOR FORMAT– It is a color image format. It has 65,536 different colors 
in it. It is also known as High Color Format. In this format the distribution of color is 
not as same as Grayscale image. 
 
Open CV Introduction 
OpenCV was started at Intel in 1999 by Gary Bradsky and the first release came out 
in 2000. Vadim Pisarevsky joined Gary Bradsky to manage Intel’s Russian software 
OpenCV team. In 2005, OpenCV was used on Stanley, the vehicle who won 2005 
DARPA Grand Challenge. Later its active development continued under the support 
of Willow Garage, with Gary Bradsky and Vadim Pisarevsky leading the project.  
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OpenCV supports a wide variety of programming languages like C++, Python, Java 
etc and is available on different platforms including Windows, Linux, OS X, Android, 
iOS etc. Also, interfaces based on CUDA and OpenCL are also under active 
development for high-speed GPU operations.  
OpenCV-Python is the Python API of OpenCV. It combines the best qualities of 
OpenCV C++ API and Python language.  
In OpenCV, the CV is an abbreviation form of a computer vision, which is defined as 
a field of study that helps computers to understand the content of the digital images 
such as photographs and videos. It works with NumPy, Scikit-image, and Matplotlib. 
It uses the BGR (Blue, Green and Red) color model for the images. 
The purpose of computer vision is to understand the content of the images. It extracts 
the description from the pictures, which may be an object, a text description, and 
three-dimension model, and so on.  
Working with OpenCV-Python 

Read an image from file (using cv::imread) 

Display an image in an OpenCV window (using cv::imshow) 

Write an image to a file (using cv::imwrite) 

OpenCv-Python is to be installed first. The following commands work well with 
Google Collab, which has already installed CV library. 
Code: 

#!pip install opencv-python 
import cv2 as cv 
import matplotlib.pyplot as plt 

Syntax of imread cv.imread(filename[,flag]) filename: Name of the file along with 
path to be loaded 

flag: The flag specifies the color type of a loaded image The imread() function 
returns a matrix. Flag 0 --grey; 1- coloured; -1: Unchanged 

img=cv.imread('/content/drive/MyDrive/AI Training/lena.tif') 
## reads image in BGR format 
img # To display image matrix 
type(img) # To display type numpy 
plt.imshow(img) # To display image 
plt.show() # To display image 
## To display image on the console 
##cv.imshow('display window',img) 
#cv.waitKey(3)  # 0- Any key, 3- Enter Key 
#cv.destroyAllWindows()   
grey =cv.imread('/content/drive/MyDrive/AI Training/lena.tif'
,0) # To read image in grey format 
plt.imshow(grey) 
plt.show() 

 
To Save Image to Desired Location 
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cv.imwrite('/content/drive/MyDrive/AI Training/Lena_Grey.png'
,grey) 
 

To convert image from one format to another 
img=cv.imread('/content/drive/MyDrive/AI Training/lena.tif') 
rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB ) 
plt.imshow(rgb) 
plt.axis('off') ## Display Off for the axis 
plt.show() 

 
Properties of Image 

#shape of image 
dimensions= img.shape 
print('Image Dimension    : ',dimensions)   
#height 
height = img.shape[0] 
print('Image Height       : ',height) 
# width   
width = img.shape[1] 
print('Image Width        : ',width)   
# no. of channel 
channels = img.shape[2]   
print('Number of Channels : ',channels)   
# Size of the image 
size1 = img.size   
print('Image Size  :', size1) 

 
Splitting the image channels 

## splitting the image into its color channels 
img=cv.imread("lena.tif") 
b,g,r = cv.split(img)   
## show the respective color channels 
plt.subplot(1,3,1) 
plt.imshow(b) ## for red channel write r and for green channe
l write g 
plt.subplot(1,3,2) ## To display images in one row; 1-
no of rows, 3-
no of column, 2 is the col position where image will start 
plt.imshow(g) 
plt.subplot(1,3,3) 
plt.imshow(r) 
plt.show() ## Code to display different shades together 
 

Drawing Different Shapes on Images User can draw the various shapes on an 
image such as circle, line, rectangle, ellipse, etc. It is used when we want to 
highlight any object in the input image. 

Drawing Circle User can draw the circle on the image by using the cv2.circle() 
function. The syntax is the following: 

cv2.circle(img, center, radius, color[,thickness [, lineType]])  
img=cv.imread('/content/drive/MyDrive/AI Training/lena.tif') 
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#img=cv.imread("lena.tif") 
#cv.circle(img,(300,300),80,(0,255,255),-1) 
#cv.circle? 
 
img_circle=cv.circle(img,(300,300),80,(0,255,255),5) 
img_circle=cv.circle(img,(300,300),20,(0,255,255),-1) 
plt.imshow(img_circle) 
plt.show() 

 

Drawing Rectanle cv2.rectangle(img, pt1, pt2, color[, thickness[,lineType]]) 
img=cv.imread('/content/drive/MyDrive/AI Training/lena.tif') 
img_rect=cv.rectangle(img,(200,200),(400,400),(0,255,255),15)
   
plt.imshow(img_rect) 
plt.show() 

 

Drawing lines 

cv2.line(img, pt1, pt2, color[, thickness]]) 
img=cv.imread('/content/drive/MyDrive/AI Training/lena.tif') 
cv.line(img,(100,100),(250,250),(0,0,0),30) 
plt.imshow(img) 
plt.show() 

 

Write Text on Image User can write text on the image by using the putText() 
function. The syntax is given below. 

cv2.putText(img, text, org, font, color) 
img=cv.imread('/content/drive/MyDrive/AI Training/lena.tif') 
font = cv.FONT_HERSHEY_SIMPLEX  
cv.putText(img,'Hello',(10,500), font,2,(255,255,255),5)   
plt.imshow(img) 
plt.show() 

 

Resize the image 

In the image processing, we need to resize the image to perform the particular image 
processing operation. 

cv2.resize(src, dsize[, dst[, fx[,fy[,interpolation]]]) 

• src - source/input image (required). 
• dsize - desired size for the output image(required) 
• fx - Scale factor along the horizontal axis.(optional) 
• fy - Scale factor along the vertical axis. 
• Interpolation(optional) - This flag uses following methods: 

o INTER_NEAREST - A nearest-interpolation 
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o INTER_AREA - resampling using pixel area relation. When we 
attempt to do image zoom, it is similar to the INTER_NEAREST 
method. 

o INTER_CUBIC - A bicubic interpolation over 4×4 pixel 
neighborhood. 

o INTER_LANCOZS4 - Lanczos interpolation over 8×8 pixel 
neighborhood. 

## Resize the image dimension 
img1 = cv.imread('/content/drive/MyDrive/AI Training/healthy.
jpeg', 1) 
resized = cv.resize(img1, (256, 256), interpolation=cv.INTER_
AREA) 
 
#Size of original image 
print('Original Image Size    : ',img1.shape) 
 
#Size of resized image 
print('Resize Image Size    : ',resized.shape) 
 
## show the resized image 
plt.imshow(resized) 
plt.show() 
img = cv.imread('/content/drive/MyDrive/AI Training/healthy.j
peg', 1) 
print('Original Dimensions : ', img.shape)   
#plt.imshow(img) 
#plt.show() 
width = img.shape[1]  # keep original width   
height = 1000    
dim = (width, height)   
   
# resize image   
resized = cv.resize(img, dim, interpolation=cv.INTER_AREA)   
   
print('Resized Dimensions : ', resized.shape)  
plt.imshow(resized) 
plt.show() 
 
img = cv.imread('/content/drive/MyDrive/AI Training/healthy.j
peg', 1) 
width = 350   
height = 450   
dim = (width, height)   
# resize image   
resized = cv.resize(img, dim, interpolation=cv.INTER_AREA)   
print('Resized Dimensions : ', resized.shape)  
plt.imshow(resized) 
plt.show() 
 

Image Transformation 
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A transformation that can be expressed in the form of a matrix multiplication (linear 
transformation) followed by a vector addition (translation). OpenCV calculates the 
affine matrix that performs affine transformation, which means it does not preserve 
the angle between the lines or distances between the points, although it preserves the 
ratio of distances between points lying on the lines. Following transformations are 
possible 

• Rotation: The image can be rotated in various angles (90,180,270 and 360) 
• Scaling: scaling the image to certain level 

Opencv uses two function for performing the Transformations. The syntax is: 

M = cv2.getRotationMatrix2D(center, angle, scale) 

• center: It represents the center of the image. 
• angle: It represents the angle by which a particular image to be rotated in the 

anti-clockwise direction. 
• scale: The value 1.0 is denoted that the shape is preserved. Scale the image 

according to the provided value. 

transform = cv2.warpAfifne(img,M,(w,h)) 
img: original Image 
M: Rotation matrix 
h, w = Height and width of the original Image 
# get image height, width   
img = cv.imread('/content/drive/MyDrive/AI Training/healthy.j
peg', 1) 
(h, w) = img.shape[:2]   
# calculate the center of the image   
center = (w / 2, h / 2)  
 
## rotate image 90 degree  
M= cv.getRotationMatrix2D(center,90, 1) 
rotated90 = cv.warpAffine(img, M, (h, w))  
# 180 degrees   
M = cv.getRotationMatrix2D(center,180,1)   
rotated180 = cv.warpAffine(img, M, (w, h))    
# 270 degrees   
M = cv.getRotationMatrix2D(center,270,1)   
rotated270 = cv.warpAffine(img, M, (w, h))  
## show the original image 
plt.imshow(img) 
plt.show() 
 
## show the rotated image 
plt.imshow(rotated90) 
plt.show() 
plt.imshow(rotated180) 
plt.show() 
plt.imshow(rotated270) 
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plt.show() 
## scaling the image 
img = cv.imread('/content/drive/MyDrive/AI Training/healthy.j
peg', 1) 
# get image height, width   
(h, w) = img.shape[:2]   
# calculate the center of the image   
center = (w / 2, h / 2)  
 
## Scale the image to certain level 
M= cv.getRotationMatrix2D(center,0, 1.5) 
scaled = cv.warpAffine(img, M, (h, w))   
 
## show the original image 
plt.imshow(img) 
plt.show() 
 
## show the scaled image 
plt.imshow(scaled) 
plt.show() 

 
 
References 
https://opencv.org/ 
https://docs.opencv.org/4.x/d9/df8/tutorial_root.html 
Tutorial: https://www.javatpoint.com/opencv 
https://www.tutorialspoint.com/opencv/index.htm 
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Introduction: 

Ensemble methods are techniques that aim at improving the accuracy of results in 
models by combining multiple models instead of using a single model. They combine 
multiple algorithms to produce better classification performance. It is a machine 
learning approach to combine multiple other models in the prediction process. The 
combined models increase the accuracy of the results significantly. Those models are 
referred to as base estimators. It is a solution to overcome the following technical 
challenges of building a single estimator: High variance: The model is very sensitive 
to the provided inputs to the learned features. 

• Low accuracy: One model or one algorithm to fit the entire training data might not 
be good enough to meet expectations. 

• Features noise and bias: The model relies heavily on one or a few features while 
making a prediction. 

Bagging is used to reduce the variance of weak learners. Boosting is used to reduce 
the bias of weak learners. Stacking is used to improve the overall accuracy of strong 
learners. 
Ensemble Algorithm: 

A single algorithm may not make the perfect prediction for a given dataset. Machine 
learning algorithms have their limitations and producing a model with high accuracy 
is challenging. If we build and combine multiple models, the overall accuracy could 
get boosted. The combination can be implemented by aggregating the output from each 
model with two objectives: reducing the model error and maintaining its 
generalization. The way to implement such aggregation can be achieved using some 
techniques. Some textbooks refer to such architecture as meta-algorithms. 
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Ensemble Learning: 

Building ensemble models is not only focused on the variance of the algorithm used. 
For instance, we could build multiple C45 models where each model is learning a 
specific pattern specialized in predicting one aspect. Those models are called weak 
learners that can be used to obtain a meta-model. In this architecture of ensemble 
learners, the inputs are passed to each weak learner while collecting their predictions. 
The combined prediction can be used to build a final ensemble model. 

One important aspect to mention is those weak learners can have different ways of 
mapping the features with variant decision boundaries. 

 
Ensemble Techniques: 

a. Bagging: 

We use bagging for combining weak learners of high variance. Bagging aims to 
produce a model with lower variance than the individual weak models. These weak 
learners are homogenous, meaning they are of the same type. Bagging is also known 
as Bootstrap aggregating. It consists of two steps: bootstrapping and aggregation. 

Bootstrapping: Involves resampling subsets of data with replacement from an initial 
dataset. In other words, subsets of data are taken from the initial dataset. These subsets 
of data are called bootstrapped datasets or, simply, bootstraps. Resampled ‘with 
replacement’ means an individual data point can be sampled multiple times. Each 
bootstrap dataset is used to train a weak learner. 
Aggregating: The individual weak learners are trained independently from each 
other. Each learner makes independent predictions. The results of those predictions 
are aggregated at the end to get the overall prediction. The predictions are aggregated 
using either max voting or averaging. 

• Max Voting is commonly used for classification problems. It consists of 
taking the mode of the predictions (the most occurring prediction). It is called 
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voting because like in election voting, the premise is that ‘the majority rules’. 
Each model makes a prediction. A prediction from each model counts as a 
single ‘vote’. The most occurring ‘vote’ is chosen as the representative for the 
combined model. 

• Averaging is generally used for regression problems. It involves taking the 
average of the predictions. The resulting average is used as the overall 
prediction for the combined model. 

It is one of the most straightforward and most intuitive ensemble-based algorithms 
that create separate samples of the training dataset. Each training dataset is used to 
train a different classification. 

 
 

The idea of bagging is based on making the training data available to an iterative 
process of learning. Each model learns the error produced by the previous model 
using a slightly different subset of the training dataset. Bagging reduces variance 
and minimizes overfitting. One example of such a technique is the Random 
Forest algorithm. 
The steps of Bagging are as follows: 
1. We have an initial training dataset containing n-number of instances. 
2. We create a m-number of subsets of data from the training set.  We take a 

subset of N sample points from the initial dataset for each subset. Each subset 
is taken with replacement. This means that a specific data point can be sampled 
more than once. 

3. For each subset of data, we train the corresponding weak learners 
independently. These models are homogeneous, meaning that they are of the 
same type. 

4. Each model makes a prediction. 
5. The predictions are aggregated into a single prediction. For this, either max 

voting or averaging is used. 
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Bagging Algorithm:  
Input:  
Data Set D = {(X1, Y1), (X2, Y2), ..., (Xn, Yn )}  
Number of iteration T  
Process:  
Step 1: for i = 1 to T  
(a) Through sampling data points with replacement, create a dataset 
sample Sm.  
(b) From each dataset sample, Sm learns a classifier Cm.  
Step 2: for every test example.  
(a) Try all classifiers Cm.  
(b) Estimate the class that earns the largest number of votes 

b. Random Forest:  

Random Forest is another ensemble machine learning algorithm that follows 
the bagging technique. It is an extension of the bagging estimator algorithm. 
The base estimators in random forest are decision trees. Unlike bagging meta 
estimator, random forest randomly selects a set of features which are used to 
decide the best split at each node of the decision tree. It uses subset of training 
samples as well as subset of features to build multiple split trees. Multiple 
decision trees are built to fit each training set. The distribution of 
samples/features is typically implemented in a random mode. 
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Looking at it step-by-step, this is what a random forest model does: 
1. Random subsets are created from the original dataset (bootstrapping). 
2. At each node in the decision tree, only a random set of features are considered 

to decide the best split. 
3. A decision tree model is fitted on each of the subsets. 
4. The final prediction is calculated by averaging the predictions from all 

decision trees. 

Note: The decision trees in random forest can be built on a subset of data and 
features. Particularly, the sklearn model of random forest uses all features for 

decision tree and a subset of features are randomly selected for splitting at each 
node. 
To sum up, Random forest randomly selects data points and features, and 
builds multiple trees (Forest). 

c. Extra-Trees Ensemble:  

Extra-Trees Ensemble is an another ensemble technique where the predictions are 
combined from many decision trees. Similar to Random Forest, it combines a large 
number of decision trees. However, the Extra-trees use the whole sample while 
choosing the splits randomly. 

d. Boosting:  

We use boosting for combining weak learners with high bias. Boosting aims to 
produce a model with a lower bias than that of the individual models. Like in 
bagging, the weak learners are homogeneous. 

Boosting involves sequentially training weak learners. Here, each subsequent 
learner improves the errors of previous learners in the sequence. A sample of data 
is first taken from the initial dataset. This sample is used to train the first model, 
and the model makes its prediction. The samples can either be correctly or 
incorrectly predicted. The samples that are wrongly predicted are reused for 
training the next model. In this way, subsequent models can improve on the errors 
of previous models. Unlike bagging, which aggregates prediction results at the end, 
boosting aggregates the results at each step. They are aggregated using weighted 
averaging. 

Weighted averaging involves giving all models different weights depending on 
their predictive power. In other words, it gives more weight to the model with the 
highest predictive power. This is because the learner with the highest predictive 
power is considered the most important. 

Boosting works with the following steps: 
1. We sample m-number of subsets from an initial training dataset. 
2. Using the first subset, we train the first weak learner. 
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3. We test the trained weak learner using the training data. As a result of the 
testing, some data points will be incorrectly predicted. 

4. Each data point with the wrong prediction is sent into the second subset of 
data, and this subset is updated. 

5. Using this updated subset, we train and test the second weak learner. 
6. We continue with the following subset until the total number of subsets is 

reached. 
7. We now have the total prediction. The overall prediction has already been 

aggregated at each step, so there is no need to calculate it. 

 
Algorithm:  
Input:  
Data set D = {(X1, Y1), (X2, Y2), ..., (Xn, Yn )}  
Number of iteration T  
Process:  
Step 1: Initialize Weight: Each case receives the same weight.  
Wi = 1/N, where i = 1, 2, 3 … N.  
Step 2: Construct a classifier using current weight, Compute its error: 

 
Step 3: Get a classifier influence and update example weight. 

 
Step 4: Go to step 2. 

e. Adaptive Boosting (AdaBoost):  

Adaptive Boosting (AdaBoost) is an ensemble of algorithms, where we build 
models on the top of several weak learners. As we mentioned earlier, those 
learners are called weak because they are typically simple with limited 
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prediction capabilities. It is one of the simplest boosting algorithms. Usually, 
decision trees are used for modelling. Multiple sequential models are created, 
each correcting the errors from the last model. AdaBoost assigns weights to 
the observations which are incorrectly predicted and the subsequent model 
works to predict these values correctly. 

The adaptation capability of AdaBoost made this technique one of the earliest 
successful binary classifiers. Sequential decision trees were the core of such 
adaptability where each tree is adjusting its weights based on prior knowledge 
of accuracies. Hence, we perform the training in such a technique in sequential 
rather than parallel process. In this technique, the process of training and 
measuring the error in estimates can be repeated for a given number of iteration 
or when the error rate is not changing significantly. 

AdaBoost was the first boosting technique and is still now widely used in 
several domains. AdaBoost, in theory, is not prone to overfitting. Stage-wise 
estimation may slow down the learning process since parameters aren’t jointly 
optimized. AdaBoost may be used to increase the accuracy of the weak 
classifiers, allowing it to be more flexible. It requires no normalization and 
has a low generalization error rate. However, training the algorithm takes 
enormous time. The method is also susceptible to noisy data and outliers. 
Therefore, removing them before employing them is strongly advised. 
 
Looking at it step-by-step, this is what a AdaBoost model does: 
1. Initially, all observations in the dataset are given equal weights. 
2. A model is built on a subset of data. 
3. Using this model, predictions are made on the whole dataset. 
4. Errors are calculated by comparing the predictions and actual values. 
5. While creating the next model, higher weights are given to the data points 

which were predicted incorrectly. 
6. Weights can be determined using the error value. For instance, higher the 

error more is the weight assigned to the observation. 
7. This process is repeated until the error function does not change, or the 

maximum limit of the number of estimators is reached. 

f. Gradient Boosting:  

Gradient Boosting or GBM is another ensemble machine learning algorithm 
that works for both regression and classification problems. GBM uses the 
boosting technique, combining a number of weak learners to form a strong 
learner. Regression trees used as a base learner, each subsequent tree in series 
is built on the errors calculated by the previous tree. Gradient boosting 
algorithms are great techniques that have high predictive performance. 
Xgboost, LightGBM, and CatBoost are popular boosting algorithms that can 
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be used for regression and classification problems. Their popularity has 
significantly increased after their proven ability to win some Kaggle 
competitions. 

g. Stacking 

Stacking, also known as Stacked Generalization, is use to improve the 
prediction accuracy of strong learners. Stacking aims to create a single 
robust model from multiple heterogeneous strong learners. 
Stacking differs from bagging and boosting in that: 
• It combines strong learners 

• It combines heterogeneous models 

• It consists of creating a Metamodel. A metamodel is a model created 
using a new dataset. 

Individual heterogeneous models are trained using an initial dataset. These 
models make predictions and form a single new dataset using those 
predictions. This new data set is used to train the metamodel, which makes 
the final prediction. The prediction is combined using weighted averaging. 
Because stacking combines strong learners, it can combine bagged or 
boosted models. 
Stacking is a method similar to boosting. It is an interesting way of combining 
different models where multiple different algorithms are applied to the 
training dataset to create a model. The Meta classifier is used to predict unseen 
data accurately. They produce more robust predictors. It is a process of learning 
how to create such a stronger model from all weak learners’ predictions. 
It is an ensemble technique that combines multiple classifications or 
regression models via a meta-classifier or a meta-regressor. The base-level 
models are trained on a complete training set, then the meta-model is trained 
on the features that are outputs of the base-level model. The base-level often 
consists of different learning algorithms and therefore stacking ensembles are 
often heterogeneous. 
The models(Base-Model) in stacking are typically different (e.g. not all 
decision trees) and fit on the same dataset. Also, a single model( Meta-model) 
is used to learn how to best combine the predictions from the contributing 
models. 
The architecture of a stacking model involves two or more base models, often 
referred to as level-0 models and a meta-model. Meta-model, also referred to 
as a level-1 model combines the predictions of the base models. 
The steps of Stacking are as follows: 

1. We use initial training data to train m-number of algorithms. 
2. Using the output of each algorithm, we create a new training set. 
3. Using the new training set, we create a meta-model algorithm. 
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4. Using the results of the meta-model, we make the final prediction. The 
results are combined using weighted averaging. 

The outputs from the base models used as input to the meta-model may be real 
values in the case of regression, and probability values, probability like values, 
or class labels in the case of classification. 

 
Please note that what is being learned here (as features) is the prediction from 
each model. 

When to use Bagging, Boosting and Stacking? 

 
• If you want to reduce the overfitting or variance of your model, you use 

bagging. If you are looking to reduce underfitting or bias, you use 
boosting. If you want to increase predictive accuracy, use stacking. 

• Bagging and boosting both works with homogeneous weak learners. 
Stacking works using heterogeneous solid learners. 

• All three of these methods can work with either classification or regression 
problems. 
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• One disadvantage of boosting is that it is prone to variance or overfitting. 
It is thus not advisable to use boosting for reducing variance. Boosting will 
do a worse job in reducing variance as compared to bagging. 

• On the other hand, the converse is true. It is not advisable to use bagging 
to reduce bias or underfitting. This is because bagging is more prone to 
bias and does not help reduce bias. 

• Stacked models have the advantage of better prediction accuracy than 
bagging or boosting. But because they combine bagged or boosted models, 
they have the disadvantage of needing much more time and computational 
power.   If you are looking for faster results, it’s advisable not to use 
stacking. However, stacking is the way to go if you’re looking for high 
accuracy. 

Conclusion 
• Ensemble learning combines multiple machine learning models into a 

single model. The aim is to increase the performance of the model. 

• Bagging aims to decrease variance, boosting aims to decrease bias, and 
stacking aims to improve prediction accuracy. 

• Bagging and boosting combine homogenous weak learners. Stacking 
combines heterogeneous solid learners. 

• Bagging trains models in parallel and boosting trains the models 
sequentially. 

• Stacking creates a meta-model 
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Introduction to Big Data Analytics in Agriculture 

Agriculture is one of the oldest and most important industries in the world. It is the 
backbone of many economies, providing food, fiber, and other essential resources to 
the global population. However, as the world's population continues to grow, the 
agriculture industry is facing new challenges. One of the biggest challenges is the 
need to increase production while reducing the environmental impact of farming 
practices. 

Big data analytics has the potential to revolutionize the agriculture industry by 
providing farmers and researchers with valuable insights into crop yields, weather 
patterns, soil conditions, and other critical factors that affect crop growth. By 
analyzing large amounts of data, farmers and researchers can make more informed 
decisions about planting, harvesting, and managing crops, which can lead to increased 
yields, reduced costs, and a more sustainable future for the agriculture industry. 

In this lecture, we will discuss the role of big data analytics in agriculture and the 
various data sources that are used to inform agricultural decision making. We will 
also review the most popular techniques and algorithms used in big data analytics, 
such as machine learning, deep learning, and predictive modeling. 

Data Sources for Big Data Analytics in Agriculture 

The agriculture industry generates a vast amount of data from various sources, 
including weather stations, drones, satellites, and IoT sensors. This data can be used 
to inform agricultural decision making, such as planting and harvesting times, 
irrigation, fertilization, and pest management. 

Weather data is one of the most important data sources for agriculture, providing 
information on temperature, precipitation, wind speed, and other factors that affect 
crop growth. Weather stations and weather satellites provide accurate and detailed 
data that can be used to predict weather patterns and make informed decisions about 
planting and harvesting times. 

Drones and satellites are also becoming increasingly popular in agriculture, providing 
high-resolution images and data that can be used to analyze crop health, soil 
conditions, and other factors that affect crop growth. Drones can also be used to spray 
pesticides and fertilizers, reducing the need for manual labor. 

IoT sensors are also becoming increasingly popular in agriculture, providing data on 
soil moisture, pH levels, temperature, and other factors that affect crop growth. This 
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data can be used to improve irrigation and fertilization practices, leading to increased 
yields and reduced costs. 

Techniques and Algorithms in Big Data Analytics 

Machine learning and deep learning are the most popular techniques used in big data 
analytics in agriculture. Machine learning algorithms can be used to analyze large 
amounts of data and make predictions about crop yields, weather patterns, and soil 
conditions. 

Deep learning algorithms, such as convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), can be used to analyze images and data from 
drones and satellites. These algorithms can be used to detect patterns and anomalies 
in crop growth, such as disease and pests, and predict crop yields. 

Predictive modeling is also commonly used in agriculture to predict crop yields, 
weather patterns, and other factors that affect crop growth. Predictive models can be 
used to make informed decisions about planting, harvesting, and managing crops, 
leading to increased yields and reduced costs. 

Applications of Big Data Analytics in Agriculture 

Big data analytics can be used to improve various aspects of the agriculture industry, 
such as crop yields, sustainability, and efficiency. 

One of the most important applications of big data analytics in agriculture is 
improving crop yields. By analyzing weather patterns, soil conditions, and other 
factors that affect crop growth, farmers and researchers can make more informed 
decisions about planting, harvesting, and managing crops, leading to increased yields. 
Big data analytics can also be used to improve the sustainability of agricultural 
practices. By analyzing data on soil conditions, water usage, and other factors, farmers 
and researchers can identify ways to reduce the environmental impact of farming 
practices. This can include reducing the use of fertilizers and pesticides, improving 
irrigation practices, and identifying alternative crops that are better suited to specific 
regions and weather patterns. 

Another important application of big data analytics in agriculture is improving 
efficiency. By analyzing data on crop yields, weather patterns, and other factors, 
farmers and researchers can identify ways to reduce costs and increase productivity. 
This can include optimizing planting and harvesting times, improving irrigation and 
fertilization practices, and identifying new technologies and techniques that can be 
used to improve crop yields. 

Big data analytics can also be used to improve the traceability and transparency of 
agricultural products. By analyzing data on crop growth, weather patterns, and other 
factors, farmers and researchers can ensure that agricultural products are safe, high-
quality, and sustainable. This can include identifying risks such as pests and diseases, 
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and ensuring that agricultural products are produced in a way that is safe for the 
environment and for human health. 

Summary 

Big data analytics has the potential to revolutionize the agriculture industry by 
providing farmers and researchers with valuable insights into crop yields, weather 
patterns, soil conditions, and other critical factors that affect crop growth. By 
analyzing large amounts of data, farmers and researchers can make more informed 
decisions about planting, harvesting, and managing crops, which can lead to increased 
yields, reduced costs, and a more sustainable future for the agriculture industry. This 
chapter provides a general overview of the role and applications of big data analytics 
in agriculture and the various data sources, techniques and algorithms used in big data 
analytics in agriculture. 

Big Data Analytics on Kisan Call Center Data 

Kisan Call Center (KCC) is a toll-free service provided by the government of India to 
assist farmers with information on various government schemes, weather forecast, 
market prices, etc. The call center receives a large number of calls on a daily basis, 
and the data generated from these calls can be analyzed to gain valuable insights. 
In this lecture, we will discuss the process of performing big data analytics on KCC 
data using Python programming language. We will cover the following topics: 

1. Data Collection 

2. Data Cleaning and Preprocessing 

3. Data Exploration 

4. Data Analysis 

5. Data Visualization 

6. Data Collection: 

The first step in the big data analytics process is to collect the data. In the case of KCC 
data, the data can be collected from the call center's database. The data can be in the 
form of call logs, which includes information such as the caller's address, the date and 
time of the call, the duration of the call, etc. 
Example: 
import pandas as pd 
 
# Read the data from a CSV file 
data = pd.read_csv("KCC_data.csv") 

2. Data Cleaning and Preprocessing: 

The next step is to clean and preprocess the data. This step is essential to ensure that 
the data is in a format that can be easily analyzed. Data cleaning can include tasks 
such as removing missing or duplicate data, and converting data into a consistent 
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format. Data preprocessing can include tasks such as normalizing the data and 
removing irrelevant information. 
Example: 
# Removing missing values 
data = data.dropna() 
 
# Removing duplicate rows 
data = data.drop_duplicates() 

3. Data Exploration: 

Once the data is cleaned and preprocessed, the next step is to explore the data. This 
step is essential to understand the structure and characteristics of the data. Data 
exploration can include tasks such as calculating summary statistics, identifying 
patterns and trends, and identifying outliers. 
Example: 
# Calculating summary statistics 
data.describe() 
 
# Identifying patterns and trends 
data.groupby("call_reason").size() 
 
# Identifying outliers 
data[data.duration > data.duration.mean() + 3*data.duration.std()] 

4. Data Analysis: 

The next step is to perform data analysis. This step is essential to extract insights and 
information from the data. Data analysis can include tasks such as building predictive 
models, performing statistical tests, and identifying correlations. 
Example: 
# Building a predictive model 
from sklearn.linear_model import LinearRegression 
 
X = data[["duration"]] 
y = data["call_reason"] 
 
model = LinearRegression() 
model.fit(X, y) 
 
# Perform statistical tests 
from scipy.stats import ttest_ind 
 
call_reason1 = data[data["call_reason"] == "Weather Forecast"] 
call_reason2 = data[data["call_reason"] == "Market Prices"] 
 
ttest_ind(call_reason1["duration"], call_reason2["duration"]) 
 
# Identifying correlations 
data.corr() 

5. Data Visualization: 
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The final step is to visualize the data. This step is essential to communicate the insights 
and information obtained from the data analysis. Data visualization can include tasks 
such as creating charts, graphs, and maps. There are many libraries in python such as 
Matplotlib, seaborn, and plotly which can be used for data visualization. 
Example: 
import matplotlib.pyplot as plt 
 
# Creating a bar chart 
data.groupby("call_reason").size().plot(kind="bar") 
plt.xlabel("Call Reason") 
plt.ylabel("Number of Calls") 
plt.show() 
 
# Creating a scatter plot 
plt.scatter(data["duration"], data["call_reason"]) 
plt.xlabel("Call Duration (in seconds)") 
plt.ylabel("Call Reason") 
plt.show() 

 
Conclusion: 
In this lecture, we discussed the process of performing big data analytics on Kisan 
Call Center data using python programming language. We covered the steps of data 
collection, cleaning, preprocessing, exploration, analysis and visualization. By 
utilizing the python libraries and techniques discussed in this lecture, we can gain 
valuable insights and make informed decisions based on the KCC data. 
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Introduction: 

Python is not only used by data analysts for AI or machine learning, but its flexibility 
makes it popular among the developers. It has been used for developing many 
powerful and professional web applications which are quick-loading and secure for 
example, Netflix, You Tube, Dropbox, Reddit, Instagram etc. For web development 
using Python, Django and flask are the two most popular frameworks. In this tutorial 
we will be restricted to only Flask framework for web development.  

Web development is basically creation of applications that runs over the Internet i.e., 
websites. It involves both building and maintenance of websites. To understand Web 
development in a clearer way let us first look at the following client server 
architecture. The client-server architecture or model has other systems connected over 
a network where resources are shared among the different computers.  

Figure 1: Client Server Web Architecture 

Client server architecture is a computing model in which the client request for 
resources which is provided by the server as a response to the request. The client-
server architecture has other systems connected over a network where resources are 
shared among the different computers. Clients are often situated at personal 
computers and servers are located elsewhere in the network, usually on a more 
powerful machine.  All requests and services are delivered over a network that is 
connected to the Internet. Clients access these servers through the browser. User client 
types URL (Uniform Resource Locator) of a website in the browser and the browser 
sends over an HTTP/HTTPS request to WEB Server’s IP. Then the web server send 
over the requested files to the client and the client side browser render the files and 
displays the website. This client-side browser interface is generally designed by the 
markup language HTML, styled with CSS and JavaScript. For the server-side 
scripting web frameworks of respective languages are used e.g., Java, C++, PHP, 
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Python etc. Flask is used for python-based web development as the server-side 
scripting language. 

Flask is a microframework for developers, designed to enable them to create and scale 
web apps quickly and simply. It has a built-in development server and a debugger. 
Python 2.6 version or higher is required for installation of Flask. First, we must start 
with creation of a virtual environment. Virtual environment allows the user to create 
multiple environments simultaneously so as to avoid compatibility issues between the 
different versions of the libraries. The following command is used for installing the 
virtual environment: 

pip install virtualenv 

Use the following command to activate the environment. 

venv\scripts\activate 

Once the virtual environment is activated, system is ready for Flask installation. In 
PyCharm editor create a new project and select the virtual environment then go to 
‘Terminal’ and run the following command: 

pip install flask 

Figure 2: Screenshot of PyCharm for Flask installation 

The directory structure of the project will look like the following: 

 

 

 

 

 

 

 

Figure 3: Screenshot of PyCharm project directory with virtual environment  



 Python for Artificial Intelligence in Agriculture 

 207 

Then in the main.py file execute the following code: 

from flask import Flask 

app = Flask(__name__) 

@app.route('/') 

def hello_world(): 

   return 'Hello World’ 

if __name__ == '__main__': 

   app.run() 

If flask is properly installed in the system, the output looks like following: 

 

Figure 4: Screenshot of PyCharm showing successful debugging of a web project. 

Click on the above URL (localhost:5000) and it will open in the default web browser. 
‘Hello World’ message will be displayed on it. 

Flask application starts with the app.run() method within the main method. While 
developing the server, after every change the server must be manually restarted to 
reflect the change. To avoid this inconvenience, enable debug support. The server will 
then reload itself if the code changes. It will also provide a useful debugger to track 
the errors if any, in the application as following: 

if __name__ == '__main__': 

   app.run(debug=True) 

The Debug mode is enabled by setting the debug property to True, before running or 
passing the debug parameter to the run() method. 

The @app.route(‘/’) decorator allows to bind the URL to a function. It is useful 
to access the desired page directly without having to navigate from the home page. 
For example: 

@app.route(‘/hello’) 
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def hello_world(): 

   return ‘hello world’ 

Here, URL ‘/hello’ is bound to the hello_world() function. As a result, if a 
user visit http://localhost:5000/hello , the output of 
the hello_world() function will be rendered in the browser which is in this case 
the message ‘hello world’. In the URL we can also bind dynamic variable values. This 
variable part is marked as <variable_name>. It is passed as a keyword argument to 
the function with which the rule is associated. As in the following example, the rule 
parameter of route() decorator contains <name> variable part attached to URL 
‘/hello’. Hence, if the http://localhost:5000/hello/john is entered as a URL in the 
browser, then ‘john’ will be supplied to hello() function as argument and it will 
display the corresponding message. 

from flask import Flask 

app = Flask(__name__) 

@app.route('/hello/<name>') 

def hello_name(name): 

   return 'Hello %s!' % name 

if __name__ == '__main__': 

   app.run(debug = True)  

The code and the output will look as following: 

Figure 5: Screenshot of PyCharm editor displaying URL binding  

Output: 

Type ‘127.0.0.1:5000/hello’ in the browser’s address bar, it will show the following 
output: 

‘Hello World’ 
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Type ‘127.0.0.1:5000/hello/john’ in the browser’s address bar, it will show the 
following output: 

‘Hello john’ 

HTML (Hyper Text Markup Language) is the standard language for web designing 
which follows the HTTP (Hyper Text Transfer Protocol) protocol for data 
communication. To develop dynamic web pages, static HTML pages have to be 
inserted into the .py files. Python uses two HTTP request methods GET and POST 
requests for client server communication. GET method is used to request data from 
the server and POST method is used to submit data to be processed at the server. 

At first create a folder called ‘templates’ within the project directory for storing all 
the .html files. Within the templates folder create ‘login.html’ file for the GET 
method.  

login.html 

<html>   

   <body>   

      <form action = "http://localhost:5000/data" method = 
"get">   

         <table>   

         <tr><td>Name</td>   

         <td><input type="text" name="uname"></td></tr>   

         <tr><td>Password</td>   

         <td><input type ="password" name ="pass"></td></tr>   

         <tr><td><input type = "submit"></td></tr>   

        </table>   

      </form>   

   </body>   

</html>   

With the above code ‘login.html’ will display a login page for accepting two user 
inputs called name and password. To call this html page we need to bind this html 
page with a python function using the @app.route() decorator and render the html 
page within the same function like following. 

main.py: 
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from flak import render_template 

@app.route('/login',methods = ['GET']) 

def login(): 

   return render_template('login.html') 

To display the user input data after form submission, another function has to be 
created. Suppose we name the function as data and add it to the URL binder using 
@app.route() as following: 

main.py: 

@app.route('/data,methods = ['GET'])   

def data():   

      uname=request.args.get('uname')   

      passwrd=request.args.get('pass')   

      if uname=="john" and passwrd=="smith":   

          return "Welcome %s" %uname  

Output: 

URL: http://127.0.0.1:5000/data?uname=john&pass=smith 

Welcome john 

In the above output it is observed that using the GET method user parameter values 
are placed in the URL which can cause security issues. On the client side, browser 
history files containing sensitive GET requests are easily recoverable, especially 
when an unauthorized user gains access to the system. To make it more secure POST 
request is to be used. The POST request is to be used as the following code and every 
other URL binding will remain same. To make it more clear previous login.html has 
been modified as login_p.html and as well the data() has been modified as data_p(): 

login_p.html: 

<!DOCTYPE html> 

<html> 

   <body> 

      <center> 

         <form action="http://localhost:5000/data_p" 
method="post"> 

            <p>Enter Name:</p> 
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            <p><input type = "text" name = "nm" /></p> 

            <p><input type = "submit" value = "submit" /></p> 

         </form> 

      </center> 

   </body> 

</html> 

main.py: 

from flask import Flask, render_template, redirect, url_for 

from flask import request 

@app.route('/data_p', methods = ['POST', 'GET']) 

def data_p(): 

   if request.method == 'POST': 

      user = request.form['nm'] 

      return "Welcome %s" %user 

Similarly we can link other .html pages using the URL binding method where we have 
to add the desirable .html page to any function which has to called by the 
@app.route(‘/’). 
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