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Preface

The era of the innovative world is coming with the advent of new technologies in the field of
agriculture and keep enhancing the goal of sustainable development growth worldwide. The
most popular and accepted theory of life’s origins reveals that the first biocatalysts were made
of RNA or a very similar polymer instead of protein. Experiments are beginning to confirm
that the catalytic abilities of RNA are compatible with this ‘RNA world” hypothesis. An RNA
molecule that does not translate into a protein is known as a non-coding RNA (ncRNA). These
ncRNASs have been revolutionizing the RNA world in various aspect of life. Recently, several
different systematic screens have identified a surprisingly large number of new ncRNA genes.
The training program on “RNAome: Profiling and characterization of non-coding RNAs”
aimed to provide an insight into basic concepts of various theoretical and practical aspects of
transcriptomics. This manual will help the research scholars to learn and explore the application
of computational tool/techniques in their research work. The practical-oriented approach would
be a big help for the new budding technologist for insight mechanisms of multicellular
processes. The module contains each and every section of the program covered in the training
program like ‘Transcriptome Data pre-processing and Assembly’, Introduction to Linux,
Introduction to Ashoka, ‘Differential gene expression analysis’, ‘Transcriptome data
annotation’, ‘Prediction and characterization of miRNA’ ‘Overview of IncCRNA and circular
RNA’, long non coding RNASs’s roles in different physiological conditions in livestock,
IncRNA prediction through machine learning approach and ‘Gene regulatory networks to

understand disease Resistance’.

The first talk on “whole transcriptome sequencing by next-generation sequencing (NGS)
technologies or RNA-Seq” explained the complex landscape and dynamics of the
transcriptome. The sequence reads obtained from the common NGS platforms, including
[llumina, SOLID, and 454, are often very short, ranging from 35bp to 500bp. As a result, it is
necessary to reconstruct the full-length transcripts by transcriptome assembly. The theory and
hand-on-session on ‘Transcriptome Data pre-processing and assembly’ provide the
comprehensive knowledge of reconstructing entire transcriptome from raw NGS read including
detailed understanding of all informatics challenges. It was followed by lectures on Differential
gene expression (DGE) analysis. Differential gene expression (DGE) analysis is one of the
most common applications of RNA-sequencing (RNA-seq) data. This process allows for the
elucidation of differentially expressed genes across two or more conditions and is widely used

in many applications of RNA-seq data analysis. Transcriptome annotation provides insight into



the function and biological process of transcripts and the proteins they encode. The lectures on

Transcriptome annotation explained various tools and techniques for transcriptome annotation.

Micro RNAs (miRNAs) are single stranded, small and non-coding endogenous RNA
molecules, which control the gene expression at the post-transcriptional level either by
suppression or degradation. Because of its highly conserved nature, in silico methods can be
employed to predict novel miRNAs in plant species. The lecture on ‘Prediction and
characterization of miRNA’ covered bioinformatics tools and techniques for miRNA

prediction and functional analysis by identifying genes targeted by the miRNA.

INcRNAs are widely defined as a large and heterogeneous class of
regulatory transcripts that are at least 200 nt long. circRNAs are also a subtype of endogenous
ncRNAs with tissue- and cell-specific expression patterns, whose biogenesis is regulated by a
particular form of alternative splicing, termed backsplicing. With the development of high-
throughput technologies and extensive research reports, IncRNAs and circRNAs have gained
wide attention for their roles in biological processes. The lectures on ‘Overview of IncRNA
and circular RNA’ and ‘Regulatory network analysis of IncRNA’ provided detailed
understanding of their roles and bioinformatics tools and techniques for analysis.

Although the manual is mainly focuses on hand-on-session but attempts are taken to explain
theory of each session. The details of computational tools, commands and analysis pipeline via
flow chart are mentioned for each module separately that will be helpful for the naive

bioinformatician.

Sarika Sahu
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Introduction:

This online training “RNAome: Profiling and characterization of non-coding RNAS” organized
under the aegis of CRP-Genomics project, aims to provide a comprehensive view of the main
facets involved in theoretical and practical aspects of this very rapidly growing field of non-
coding RNAs. An RNA molecule that does not translate into a protein is known as a non-
coding RNA (ncRNA). These ncRNAs have been revolutionizing the RNA world in various
aspect of life. Recently, several different systematic screens have identified a surprisingly large

number of new ncRNA genes.

RNA biology is the combination of all RNAs whether coding or noncoding. The discovery of
non-coding RNAs led to the revolution in RNA world (Derks et al. 2015). Noncoding RNAs
(ncRNAs) play an important role in various biological processes and gene-disease association
(Nallar and Kalvakolanu, 2013). Among the ncRNAs, the most studied ncRNAs are
microRNA, which play a major role in gene expression (Hermeking, 2012). However, it has
been revealed that long ncRNAs (IncRNAs) also play a very important role in various
biological pathways within the cell (Huarte et al., 2010). Researchers reported that several
INcRNAs are expressed during stress conditions and are involved in stress-responsive
regulation (Zheng et al. 2014, Heo et al. 2011, Liu et al. 2012). IncRNAs are non-coding RNAs
whose length is more than 200 base pairs and biochemically resemble mRNAs but they do not
translate into proteins. Despite noncoding RNAs, IncRNAs function as RNA genes as well as
regulate distant genes. Ponting et al. (2009) classified INcCRNAs into sense, anti-sense,
bidirectional, intronic and intergenic on the basis of their chromosomal localization. In
addition, the IncRNAs are normally expressed at low levels and lack sequence similarities
among the plant species (Marques and Ponting, 2014). Plethora of literature is available for the
identification of INCRNAs in animals while very few are reported on the presence of IncRNAs
in plants (Liu et al.,2017). The analysis of INCRNA became very easy with the advent of state-
of-art technologies like next-generation sequencing. INCRNAs were identified in model plant
organisms like Arabidopsis thaliana (Wang et al. 2014, Lu et al. 2017, Sun et al. 2020) Two
InNcRNAs namely: COOLAIR (cool-assisted intronic non-coding RNA) and COLDAIR (cold-



assisted intronic non-coding RNA) regulates the flowering time epigenetic repression of FLC
(Flowering Locus C) in Arabidopsis (Heo and Sung, 2011). Another important InCRNA:
LDMAR (long-day-specific male-fertility-associated RNA) is involved in the regulation of
photoperiod male sterility in rice (Ding et al. 2012) and participated in ripening of tomato
(Zhu et al. 2015). These are few examples to be mentioned and suggest the importance of

ncRNASs in the plant and crop systems.
Objectives of this training were
To Profile of ncRNAs through Bioinformatics approach.
To provide insight into the role of RNAs and non-coding RNA in regulatory networks.
To Develop an analytical skills through lectures and hands-on session.
Different modules covered under this training program were as following
(1 Differential gene expression.
Sequencing platform and Quality Check
Assembly: de novo and reference based and annotation

0 Profiling of RNA regulatory molecule and their role in the regulation of biological

processes
Prediction and characterization of miRNAs
Prediction and characterization of IncRNAs
Prediction and characterization of circRNAs
[0 Regulatory network analysis of RNAs.
Application of machine learning in ncRNAs prediction

Different theoretical and Practical Sessions were taken during this training program. In this
manual, different session taken during training are described in detail. Chapter 2 focuses over
RNA-sequencing analysis. Chapter 3 mentions detailed practical procedure taught in the
training for Transcriptome Data Pre-processing and Assembly while Chapter 4 given an
overview of genome annotation with special focus over gene prediction. Chapter 5 gives detail
about Differential Gene Expression Analysis. Chapter 6 provide detail about different tools and
execution carried out for Transcriptome data annotation. Chapter 7 provides glimpse about

world of miRNA. In chapter 8, hands on session over prediction and Characterization of



miRNA is covered. Chapter 9 focuses over Circular RNA and about its basic concept and their
role in various processes and also covers details of Hands-on-session for circRNA prediction.

In chapter 10, aspects of RNAome in biofortification of plant and animal traits is covered.
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Introduction

The advent of Next-Generation Sequencing (NGS) technology has transformed genomic
studies. One important application of NGS technology is the study of the transcriptome, which
is defined as the complete collection of all the RNA molecules in a cell. Various types of RNA
that have been classified so far are shown in Fig. 1. All of these molecules are called transcripts

since they are produced by process of transcription.

mRNA
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Fig. 1: Different NN Ceunna types of RNA

(Image source:
http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing)

Understanding the transcriptome is essential for interpreting the functional elements of the
genome and revealing the molecular constituents of cells and tissues, and also for
understanding development and disease [1]. The main purpose of transcriptomics are: to
catalogue all species of transcript, including mRNAs, non-coding RNAs and small RNAs; to
determine the transcriptional structure of genes, in terms of their start sites, 5" and 3’ ends,
splicing patterns and other post-transcriptional modifications; and to quantify the changing

expression levels of each transcript during development and under different conditions.

The study of transcriptome is carried out through sequencing of RNAs. RNA sequencing (RNA-
Seq) is a powerful method for discovering, profiling, and quantifying RNA transcripts [2].



RNA-Seq uses NGS datasets to obtain sequence reads from millions of individual RNAs. The
RNA-Seq analysis is performed in several steps: First, all genes are extracted from the
reference genome (using annotations of type gene). Other annotations on the gene sequences
are preserved (e.g. CDS information about coding sequences etc). Next, all annotated
transcripts (using annotations of type mRNA) are extracted [3]. If there are several annotated

splice variants, they are all extracted. An example is shown in below Fig. 2(a).

Splice variant 2 L |
Splice variant 1
Gene

Ll

Fig. 2(a): A simple gene with three exons and two splice variants.

The given example is a simple gene with three exons and two splice variants. The transcripts
are extracted as shown in Fig. 2(b).

Splice variant 1 i
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGTACTGCAAAATACAACGTGATCACATTCCTTCCGAG:

z f
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGGTTATGAGAAGACAGATGATGTTTCAGAGAAGACCT

Fig. 2(b): All the exon-exon junctions are joined in the extracted transcript.

Next, the reads are mapped against all the transcripts plus the entire gene [see Fig. 2(c)].

L
Splice variant 1 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGTACTGCAAAATACAACGTGATCACATTCCTTCCGAG

L
Splice variant 2 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGGTTATGAGAAGACAGATGATGTTTCAGAGAAGACCT

Gene
ACTGCGGGGAGACCTAGGCGGCTCTGCGGACGCAGCTCCTTCGCCGCCTTCCCCCTCCCGTCCAGTGCC

Fig. 2(c): The reference for mapping: all the exon-exon junctions and the gene.

(Image source: CLC Genomic workbench tutorials)
From this mapping, the reads are categorized and assigned to the genes and expression values

for each gene and each transcript are calculated and putative exons are then identified.

RNA Sequencing Experiment

In a standard RNA-seq experiment, a sample of RNA is converted to a library of
complementary DNA fragments and then sequenced on a high-throughput sequencing
platform, such as Illlumina's Genome Analyzer, SOLiDor Roche 454 [4]. Millions of short
sequences, or reads, are obtained from this sequencing and then mapped to a reference genome

(Fig. 3). The count of reads mapped to a given gene measures the expression level of this gene.



The unmapped reads are usually discarded and mapped reads for each sample are assembled
into gene-level, exon-level or transcript-level expression summaries, depending on the
objectives of the experiment. The count of reads mapped to a given gene/exon/transcript

measures the expression level for this region of the genome or transcriptome.

One of the primary goals for most RNA-seq experiments is to compare the gene expression
levels across various treatments. A simple and common RNA-seq study involves two
treatments in a randomized complete design, for example, treated versus untreated cells, two
different tissues from an organism, plants, etc. In most of the studies, researchers are
particularly interested in detecting gene with differential expressions (DE). A gene is declared
differentially expressed if an observed difference or change in read counts between two
experimental conditions is statistically significant, i.e. if the difference is greater than what
would be expected just due to random variation [5]. Detecting DE genes can also be an
important pre-step for subsequent studies, such as clustering gene expression profiles or testing

gene set enrichments.
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Fig. 3: General RNA-seq experiment. mRNA is converted to cDNA, and fragments from that library are
used to generate short sequence reads. Those reads are assembled into contigs which may be mapped to
reference sequences (Wang et al., 2009).



Analysing RNA-Seq data

RNA-seq experiments must be analyzed with robust, efficient and statistically correct
algorithms. Fortunately, the bioinformatics community has been striving hard at work for
incorporating mathematics, statistics and computer science for RNA-seq and building these
ideas into software tools. RNA-seq analysis tools generally fall into three categories: (i) those
for read alignment; (ii) those for transcript assembly or genome annotation; and (iii) those for
transcript and gene quantification. Some of the open source software available for RNA-seq

analysis are as follows:
« Data preprocessing
» Fastx toolkit
» Samtools
« Short reads aligners
+ Bowtie, TOPHAT, Stampy, BWA, Novoalign, etc
« Expression studies
» Cufflinks package
* R packages (DESeq, edgeR, more...)
« Visualisation

CummeRbund, IGV, Bedtools, UCSC Genome Browser, etc.

Besides there are commercially data analysis pipelines like GenomeQuest, CLCBio etc
available for researchers to use. The most commonly used pipeline is to identify protein coding
genes by aligning RNA-Seq data to annotate data from sources like RefSeq. After generating
the alignments, the number of aligning sequences is counted for each position. Since each
alignment represents a transcript, the alignments allow to count the number of RNA molecules

produced from every gene.

Using NGS technology, RNA-Seq enables to count the number of reads that align to one of
thousands of different cDNAs, producing results similar to those of gene expression
microarrays [6]. Sequences generated from an RNA-Seq experiment are usually mapped to

libraries of known exons in known transcripts. RNA-Seq can be used for discovery applications



such as identifying alternative splicing events, allele-specific expression, and rare and novel
transcripts [7]. The sequencing output files (compressed FASTQ files) are the input for
secondary analysis. Reads are aligned to an annotated reference genome, and those aligning to
exons, genes and splice junctions are counted. The final steps are data visualisation and
interpretation, consisting of calculating gene- and transcript-expression and reporting
differential expression. A general Bioinformatics workflow to map transcripts from RNA-seq

data is shown in Fig. 4.

Fig. 4: . e ! Less abundant RNA-seq

workflow
(Adapted
fromAdvancing RNA-Seq analysis Brian J. Haas and Michael C. Zody Nature Biotechnology 28, 421-423
(2010)

RPKM (Reads per KB per million reads)

RNA-Seq provides quantitative approximations of the abundance of target transcripts in the
form of counts. However, these counts must be normalized to remove technical biases inherent
in the preparation steps for RNA-Seq, in particular the length of the RNA species and the
sequencing depth of a sample. The most commonly used is RPKM (Reads Per Kilobase of
exon model per Million mapped reads). The RPKM measure of read density reflects the molar
concentration of a transcript in the starting sample by normalizing for RNA length and for the

total read number in the measurement [8]. RPKM is mathematically represented as:

total exonreads

RPKM=

mapped reads (millions)X exon length (KB)

Total exon reads



This is the number of reads that have been mapped to a region in which an exon is annotated
for the gene or across the boundaries of two exons or an intron and an exon for an annotated
transcript of the gene. For eukaryotes, exons and their internal relationships are defined by
annotations of type mRNA.

Exon length

This is calculated as the sum of the lengths of all exons annotated for the gene. Each exon is
included only once in this sum, even if it is present in more annotated transcripts for the gene.
Partly overlapping exons will count with their full length, even though they share the same
region.

Mapped reads

The total gene reads for a gene is the total number of reads that after mapping have been
mapped to the region of the gene. A gene's region is that comprised of the flanking regions, the

exons, the introns and across exon-exon boundaries of all transcripts annotated for the gene.

Thus, the sum of the total gene reads numbers is the number of mapped reads for the sample.
Applications of RNA-seq
This technique can be used to:

o Measure gene expression

o Transcriptome assembly, gene discovery and annotation

o Detect differential transcript abundances between tissues, developmental stages,

genetic backgrounds, and environmental conditions

o Characterize alternative splicing, alternative polyadenylation, and alternative

transcription.
Future Directions

Although RNA-Seq is still in the infancy stages of use, it has clear advantages over previously
developed transcriptomic methods. Compared with microarray, which has been the dominant
approach of studying gene expression in the last two decades, RNA-seq technology has a wider
measurable range of expression levels, less noise, higher throughput, and more information to
detect allele-specific expression, novel promoters, and isoforms [9]. For these reasons, RNA-
seq is gradually replacing the array-based approach as the major platform in gene expression

studies. The next big challenge for RNA-Seq is to target more complex transcriptomes to



identify and track the expression changes of rare RNA isoforms from all genes. Technologies

that will advance achievement of this goal are pair-end sequencing, strand-specific sequencing

and the use of longer reads to increase coverage and depth. As the cost of sequencing continues

to fall, RNA-Seq is expected to replace microarrays for many applications that involve

determining the structure and dynamics of the transcriptome.
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Transcript profiling ("Transcriptomics”) is a widely used technique that obtains information on
the abundance of multiple mRNA transcripts within a biological sample simultaneously.
Therefore, when a number of such samples are analysed, as in a scientific experiment, large
and complex data sets are gene-rated. RNA-Seq technology utilizing NGS sequencing has
emerged as an attractive alternative to traditional microarray platforms for conducting
transcriptional profiling. Next generation sequencing (NGS) experiments generate a
tremendous amount of data which can't be directly analyzed in any meaningful way. Selecting
the right analytical approach along with an appropriate set of bioinformatics tools is key to
extract useful information from RNA-Seq data while avoiding misinterpretation or bias. In the
present section we will discuss about the assembly of short-read Illumina sequencing data,
which is commonly used for RNA-Seq experiments.
Requirements for RNA-Seq Data Assembly
Hardware

e Linux environment or server
Accessed via shell terminals, such as PUTTY or MobaXterm
Can use a virtual machine on Windows

32GB RAM recommended if working with larger genomes
1TB storage or higher recommended for smaller projects

Software
e FastQC
https://www.bioinformatics.babraham.ac.uk/projects/download.html
e Trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic

e Bowtie2
https://sourceforge.net/projects/bowtie-bio/files/bowtie2/
e Tophat
https://ccb.jhu.edu/software/tophat/index.shtml
e Cufflinks
http://cole-trapnell-lab.github.io/cufflinks/getting_started/
e Trinity

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Installing-Trinity

Pre-processing of RNA-Seq Data

First, switch to the where the FASTQ files are stored directory. Use the cd command (i.e.,

change directory) followed by the path of the directory.


https://www.bioinformatics.babraham.ac.uk/projects/download.html
http://www.usadellab.org/cms/?page=trimmomatic
https://sourceforge.net/projects/bowtie-bio/files/bowtie2/
https://ccb.jhu.edu/software/tophat/index.shtml
http://cole-trapnell-lab.github.io/cufflinks/getting_started/
https://github.com/trinityrnaseq/trinityrnaseq/wiki/Installing-Trinity

>> cd /path/to/folder_name/

Next, you can check the FASTQ files by using the Is command (i.e., listing), which shows the

contents of the current working directory.

Data files from sequencing providers are typically compressed and have the extension
“.fastq.gz”. These files contain structured information about individual NGS reads—a unique

identifier, the called bases, and the associated quality scores.

Lastly, you can make an output directory using the mkdir command (i.e., make directory).

Output files can be stored here.

>> mkdir /path/to/output_folder/

1. Check quality with FastQC

Run FastQC to check the raw data quality.

>> fastqc sample_01.fastg.gz --extract -o /path/to/output_folder

The output contains graphs and statistics about the raw quality, including quality scores, GC
content, adapter percentage, and more. Below is an examples of the output file “Per base

Sequence quality”.



Cuuslity scores across all bases (Tlumina >v1.3 encoding)

T
30 --! _. I ___
[ | - I O | |
- [ - | -
26 1
| |
24 L
[ P
= T g 10 Tl
!

20 o =
18 —]
16
14 - .n .
12 -
10
g
&
) i
2 o [ I I e o O | | |
a

1 2 3 4 5 6 7 8 9 100101213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 20 20 30 31 32 33 3¢ 35 36 37 38 39 40

Pasition in read {bp)

Per base sequence quality. Quality scores for each base position in the read are represented as
box plots. The blue line represents the average quality score. High-quality data will typically
have over 80% of bases with a quality score of 30 or higher (i.e., Q30 > 80%). Q30 represents
99.9% accuracy in the base call, or an error rate of 1 in 1000. A dip in quality is expected

towards the end of the read.
2. Trim reads with Trimmomatic

Poor-quality regions and adapter sequences should be trimmed from the reads before further

analysis. Trimmomatic can be used for trimming the low quality reads and adapter sequences.

>> trimmomatic PE input_forward.fastq.gz input_reverse.fastq.gz
output_forward_paired.fastq.gz output_forward_unpaired.fastq.gz
output_reverse_paired.fastg.gz output_reverse unpaired.fastq.gz
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3
MINLEN:36

Run FastQC again on the trimmed treads to confirm that the new quality is acceptable.
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Transcriptome Assembly

Refrence based Assembly
1. Indexing the reference genome

First, index the reference genome using Bowtie2 to prepare it for alignment. Adding gene
annotation information to the reference genome will facilitate alignment of RNA-Seq reads
across exon-intron boundaries. This indexing step is only required once; you can then use the

indexed genome repeatedly in future analysis.

>> bowtie-build [options]* <input referencegenome fasta file> < basename of the index files

>

It results in 6 files with extention .bt2

2. Map/Align the reads to reference Genome

Then, align the reads using Tophat.

>> tophat [options]* <genome_index_base> PE_reads_1.fq.gz,SE_reads.fa PE_reads_2.fq.gz

-0r -



>> tophat [options]* <genome_index_base> PE_reads_1.fq.gz PE_reads_2.fq.gz,SE_reads.fa

Check the mapping statistics in the [sample_name]Log.final.out file to ensure the BAM file
was generated properly and the reads align to the genome correctly. Uniquely mapped reads
are the most useful for expression analysis, as there is high confidence in which loci they
represent. In general, >60-70% for the “uniquely mapped reads %’ metric is considered good,

a significantly lower value warrants further investigation.

3. Assemble the mapped reads

Use Cufflinks program to assemble aligned RNA-Seq reads into transcripts, estimate their
abundances, test for differential expression and regulation, and provide transcript
quantification. Some of the tools part of Cufflinks can be run individually, while others are part
of a larger workflow.

>> cufflinks [options] input_alignments.[sam|bam]

The program cufflinks produces number of files in its predefined output directory. Some of the

generated files are:

transcripts.gtf: The GTF file contains Cufflinks’ assembled isoforms where there is one GTF
record per row, and each record represents either a transcript or an exon within a transcript
isoforms.fpkm_tracking: This file contains the estimated isoform-level expression values in the
generic FPKM Tracking Format

genes.fpkm_tracking: This file contains the estimated gene-level expression values in the
generic FPKM Tracking Format

De novo Assembly

De novo transcriptome assembly is often the preferred method to studying non-model
organisms, since reference-based methods are not possible without an existing genome. De

novo assembly can be performed using Trinity assembler.

A typical Trinity command for assembling non-strand-specific RNA-seq data would be like so,
running the entire process on a single high-memory server (aim for ~1G RAM per ~1M ~76

base Illumina paired reads, but often much less memory is required):

Trinity --seqType fq --max_memory 50G --left reads_1.fq.gz --right reads_2.fq.gz --CPU 6



If multiple sets of fastq files are available, such as corresponding to multiple tissue types or

conditions, etc., indicate them to Trinity like following:

Trinity --seqType fq --max_memory 50G --left condA_1.fq.gz,condB_1.fq.gz,condC_1.fq.gz
—right condA_2.fq.gz,condB_2.fq.gz,condC_2.fq.gz --CPU 6

When Trinity completes, it will create a ‘Trinity.fasta' output file in the 'trinity_out_dir/' output

directory (or output directory specified).

Trinity groups transcripts into clusters based on shared sequence content. Such a transcript
cluster is very loosely referred to as a 'gene'. This information is encoded in the Trinity fasta

accession.
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Introduction

Until the genome revolution, genes were identified by researchers with specific interests in a
particular protein or cellular process. Once identified, these genes were isolated, typically by
cloning and sequencing cDNAs, usually followed by targeted sequencing of the longer
genomics segments that code for the cDNAs. Once an organism’s entire genome sequence
becomes available, there is strong motivation for finding all the genes encoded by a genome at
once rather than in a piecemeal approach. Such catalogue is immensely valuable to researchers,
as they can learn much more from the whole picture than from a much more limited set of
genes. For example, genes of similar sequence can be identified, evolutionary and functional
relationships can be elucidated, and a global picture of how many and what types of genes are
present in a genome can be seen. A significant portion of the effort in genome sequencing is
devoted to the process of annotation, in which genes, regulatory elements, and other features
of the sequence are identifies as thoroughly as possible and catalogued in a standard format in
public databases so that researchers can easily use the information. Functional genomics
research has expanded enormously in the last decade and particularly the plant biology research
community. Functional annotation of novel DNA sequences is probably one of the top
requirements in functional genomics as this holds, to a great extent, the key to the biological

interpretation of experimental results.
Computational Gene Prediction

Computational gene prediction is becoming more and more essential for the automatic analysis
and annotation of large uncharacterized genomic sequences. In the past two decades, many
algorithms have been evolved to predict protein coding regions of the DNA sequences. They
all have in common, to varying degree, the ability to differentiate between gene features like
Exons, Introns, Splicing sites, Regulatory sites etc. Gene prediction methods predicts coding

region in the query sequences and then annotates the sequences databases.

Gene Structure and Expression



The gene structure and the gene expression mechanism in eukaryotes are far more complicated
than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a protein is usually
not continuous. This region is composed of alternating stretches of exons and introns. During
transcription, both exons and introns are transcribed onto the RNA, in their linear order.
Thereafter, a process called splicing takes place, in which, the intron sequences are excised and
discarded from the RNA sequence. The remaining RNA segments, the ones corresponding to
the exons are ligated to form the mature RNA strand. A typical multi-exon gene has the
following structure (as illustrated in Fig. 1).
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Fig. 1: Representative Diagram of Protein Coding Eukaryotic Gene

It starts with the promoter region, which is followed by a transcribed but non-coding region
called 5' untranslated region (5' UTR). Then follows the initial exon which contains the start
codon. Following the initial exon, there is an alternating series of introns and internal exons,
followed by the terminating exon, which contains the stop codon. It is followed by another
non-coding region called the 3' UTR. Ending the eukaryotic gene, there is a polyadenylation
(polyA) signal: the nucleotide Adenine repeating several times. The exon-intron boundaries
(i.e., the splice sites) are signalled by specific short (2bp long) sequences. The 5'(3") end of an
intron (exon) is called the donor site, and the 3'(5") end of an intron (exon) is called the acceptor
site. The problem of gene identification is complicated in the case of eukaryotes by the vast

variation that is found in gene structure.

Gene Prediction Methods



There are mainly two classes of methods for computational gene prediction (Fig. 2). One is
based on sequence similarity searches, while the other is gene structure and signal-based

searches, which is also referred to as Ab initio gene finding.
Sequence Similarity Searches

Sequence similarity search is a conceptually simple approach that is based on finding similarity
in gene sequences between ESTs (expressed sequence tags), proteins, or other genomes to the
input genome. This approach is based on the assumption that functional regions (exons) are
more conserved evolutionarily than non-functional regions (intergenic or intronic regions).
Once there is similarity between a certain genomic region and an EST, DNA, or protein, the
similarity information can be used to infer gene structure or function of that region. EST-based
sequence similarity usually has drawbacks in that ESTs only correspond to small portions of
the gene sequence, which means that it is often difficult to predict the complete gene structure
of a given region. Local alignment and global alignment are two methods based on similarity
searches. The most common local alignment tool is the BLAST family of programs, which
detects sequence similarity to known genes, proteins, or ESTs. The biggest limitation to this
type of approaches is that only about half of the genes being discovered have significant

homology to genes in the databases.

Ab initio Gene Prediction Methods

The second class of methods for the computational identification of genes is to use gene
structure as a template to detect genes, which is also called ab initio prediction. Ab initio gene
predictions rely on two types of sequence information: signal sensors and content sensors.
Signal sensors refer to short sequence motifs, such as splice sites, branch points, poly
pyrimidine tracts, start codons and stop codons. Exon detection must rely on the content
sensors, which refer to the patterns of codon usage that are unique to a species, and allow
coding sequences to be distinguished from the surrounding non-coding sequences by statistical

detection algorithms.



Many algorithms are applied for modelling gene structure, such as Dynamic Programming,
linear discriminant analysis, Linguist methods, Hidden Markov Model and Neural Network.
Based on these models, a great number of ab initio gene prediction programs have been
developed.

Fig. 2: Diagrammatic Representation of Gene Prediction and Annotation
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Gene Discovery in Prokaryotic Genomes



Discovery of genes in Prokaryote is relatively easy, due to the higher gene density typical of
prokaryotes and the absence of introns in their protein coding regions. DNA sequences that
encode proteins are transcribed into mMRNA, and the mRNA is usually translated into proteins
without significant modification. The longest ORFs (open reading frames) running from the
first available start codon on the mMRNA to the next stop codon in the same reading frame
generally provide a good, but not assured prediction of the protein coding regions. Several
methods have been devised that use different types of Markov models in order to capture the
compositional differences among coding regions, “shadow" coding regions (coding on the
opposite DNA strand), and noncoding DNA. Such methods, including ECOPARSE, the widely
used GENMARK, and Glimmer program, appear to be able to identify most protein coding

genes with good performance (Fig. 3).
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Fig. 3: Flow Diagram of Prokaryotic Gene Discovery

Gene Discovery in Eukaryotic Genome

It is a quite different problem from that encountered in prokaryotes. Transcription of protein
coding regions initiated at specific promoter sequences is followed by removal of noncoding
sequences (introns) from pre-mRNA by a splicing mechanism, leaving the protein encoding
exons. Once the introns have been removed and certain other modifications to the mature RNA
have been made, the resulting mature mMRNA can be translated in the 5" to 3" direction, usually



from the first start codon to the first stop codon. As a result of the presence of intron sequences
in the genomic DNA sequences of eukaryotes, the ORF corresponding to an encoded gene will

be interrupted by the presence of introns that usually generate stop codons (Fig.4).
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Fig. 4: Flow Diagram of Eukaryotic Gene Discovery

Gene Prediction Program

There are two basic problems in gene prediction: prediction of protein coding regions and
prediction of the functional sites of genes. Gene prediction program can be classified into four
generations. The first generation of programs was designed to identify approximate locations
of coding regions in genomic DNA. The most widely known programs were probably
TestCode and GRAIL. But they could not accurately predict precise exon locations. The second
generation, such as SORFIND and Xpound, combined splice signal and coding region
identification to predict potential exons, but did not attempt to assemble predicted exons into

complete genes. The next generation of programs attempted the more difficult task of



predicting complete gene structures. A variety of programs have been developed, including
GenelD, GeneParser, GenLang, and FGENEH. However, the performance of those programs
remained rather poor. Moreover, those programs were all based on the assumption that the
input sequence contains exactly one complete gene, which is not often the case. To solve this
problem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were

developed, which could be classified into the fourth generation.

GeneMark

GeneMark uses a Markov Chain model to represent the statistics of the coding and noncoding
frames. The method uses the dicodon statistics to identify coding regions. Consider the analysis
of a sequence x whose base at the i position is called xi. The Markov chains used are fifth
order, and consist of a terms such as P(a/x1x2XsX4Xs), which represent the probability of the
sixth base of the sequence x being given a given that the previous five bases in the sequence x
where X1X2X3XaXs, resulting in the first dicodon of the sequence being Xix2Xsxsxsa. These terms
must be defined for all possible pentamers with the general sequence bib2bsbabs. The values of
these terms can be obtained of analysis of data, consisting of nucleotide sequence in which the
coding regions have been actually identified. When there are sufficient data, they are given by

a Mb1p,psbabsa

bibybybsbs)

P( =
ZazA,C,G,T Mp1p,bybabsa

where, M,y p,babsa Is the number of times the sequence bib2bsbsbsa occurs in the training data.

This is the maximum likelihood estimators of the probability from the training data.
Glimmer

The core of Glimmer is Interpolated Markov Model (IMM), which can be described as a
generalized Markov chain with variable order. After GeneMark introduces the fixed-order
Markov chains, Glimmer attempts to find a better approach for modeling the genome content.
The motivational fact is that the bigger the order of the Markov chain, the more non-
randomness can be described. However, as we move to higher order models, the number of
probabilities that we must estimate from the data increases exponentially. The major limitation
of the fixed-order Markov chain is that models from higher order require exponentially more
training data, which are limited and usually not available for new sequences. However, there

are some oligomers from higher order that occur often enough to be extremely useful



predictors. For the purpose of using these higher-order statistics, whenever sufficient data is

available, Glimmer IMMSs.

Glimmer calculates the probabilities for all Markov chains from 0™ order to 8™. If there are
longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of them even when there
is insufficient data to train an 8-th order model. Similarly, when the statistics from the 8-th
order model do not provide significant information, Glimmer refers to the lower-order models

to predict genes.

Opposed to the supervised GeneMark, Glimmer uses the input sequence for training. The ORFs
longer than a certain threshold are detected and used for training, because there is high
probability that they are genes in prokaryotes. Another training option is to use the sequences
with homology to known genes from other organisms, available in public databases. Moreover,
the user can decide whether to use long ORFs for training purposes or choose any set of genes
to train and build the IMM.

GeneMark.hmm

GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. Therefore, the
properties of GeneMark.hmm are complementary to GeneMark. GeneMark.hmm uses
GeneMark models of coding and non-coding regions and incorporates them into hidden
Markov model framework. In short terms, Hidden Markov Models (HMM) are used to describe
the transitions from non-coding to coding regions and vice versa. GeneMark.hmm predicts the
most likely structure of the genome using the Viterbi algorithm, a dynamic programming
algorithm for finding the most likely sequence of hidden states. To further improve the
prediction of translation start position, GeneMark.hmm derives a model of the ribosome
binding site (6-7 nucleotides preceding the start codon, which are bound by the ribosome when
initiating protein translation). This model is used for refinement of the results.

Both GeneMark and GeneMark.hmm detect prokaryotic genes in terms of identifying open
reading frames that contain real genes. Moreover, they both use pre-computed species-specific
gene models as training data, in order to determine the parameters of the protein-coding and

non-coding regions.
Orpheus

The ORPHEUS program uses homology, codon statistics and ribosome binding sites to
improve the methods presented so far by using information that those programs ignored. One
of the key differences is that it uses database searches to help determine putative genes, and is



thus an extrinsic method. This initial set of genes is used to define the coding statistics for the
organism, in this case working at the level of codon, not dicodons. These statistics are then
used to define a larger set of candidate ORFs. From this set, those ORFs with an unambiguous
start codon end are used to define a scoring matrix for the ribosome-binding site, which is then

used to determine the 5° end of those ORFs where alternative start are present.
EcoParse

EcoParse is one of the first HMM model based gene finder, was developed for gene finding in
E.coli. It focuses on the uses the codon structure of genes. With EcoParse a flora of HMM
based gene finder, usuing dynamic programming and the viterbi algorithm to parse a sequence,

emerged.
Evaluation of Gene Prediction Programs

In the field of gene prediction accuracy can be measured at three levels

a. Coding nucleotides (base level)
b. Exon structure (exon level)
C. Protein product (protein level)

At base level gene predictions can be evaluated in terms of true positives (TP) (predicted
features that are real), true negatives (TN) (non-predicted features that are not real), false
positives (FP) (predicted features that are not real), and false negatives (FN) (real features that
were not predicted) Fig. 5. Usually the base assignment is to be in a coding or non coding
segment, but this analysis can be extended to include non coding parts of genes, or any

functional parts of the sequences.
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Fig. 5: Four Possible Comparisons of Real and Predicted Genes




Sensitivity (Sn): The fraction of bases in real genes that are correctly predicted to be in genes
is the sensitivity and interpreted as the probability of correctly predicting a nucleotide to be in

a given gene that it actually is.

TP
Sn=
TP+FN

Specificity (Sp): The fraction of those bases which are predicted to be in genes that actually

are is called the specificity and interpreted as the probability of a nucleotide actually being in

a gene given that it has been predicted to be.
TP
T TP+FP
Care has to be taken in using these two values to assess a gene prediction program because, as

Sp

with the normal definition of specificity, extreme results can make them misleading.

Approximate correlation coefficient (AC) has been proposed as a single measure to circumvent
these difficulties. This defined as AC=2(ACP-0.5), where

1[ TP TP N N J
ACP = — + + + ,

n\TP+FN TP+FP TN+FP TN+FN

At the exon level, determination of prediction accuracy depends on the exact prediction of exon
start and end points. There are two measures of sensitivity and specificity used in the field,

each of which measures a different but useful property.
The sensitivity measures used are

Sn1 = CE/AE and Sn2 = ME/AE

The specificity measures used are

Sp1=CE/PE and Sy>=WE/PE

Where,

AE = No of actual exons in the data

PE = No of predicted exons in the data

CE = No of correct predicted exons

ME = No of missing exons (rarely occurs)

WE = No of wrongly predicted exons (Figure-5)
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Fig. 6: Real and Predicted Exons



Gene Ontology

The gene ontology (GO, http:www.geneontology.org) is probably the most extensive scheme
today for the description of gene product functions but other systems such as enzyme codes,
KEGG pathways, FunCat, or COG are also widely used. Here, we describe the Blast2GO (B2G,
www.blast2go.org) application for the functional annotation, management, and data mining of
novel sequence data through the use of common controlled vocabulary schemas. The main
application domain of the tool is the functional genomics of non-model organisms and it is
primarily intended to support research in experimental labs. Blast2GO strives to be the
application of choice for the annotation of novel sequences in functional genomics projects
where thousands of fragments need to be characterized. Functional annotation in Blast2GO is
based on homology transfer. Within this framework, the actual annotation procedure is
configurable and permits the design of different annotation strategies. Blast2GO annotation
parameters include the choice of search database, the strength and number of blast results, the
extension of the query-hit match, the quality of the transferred annotations, and the inclusion
of motif annotation. Vocabularies supported by B2G are gene ontology terms, enzyme codes
(EC), InterPro IDs, and KEGG pathways.

Fig.7 shows the basic components of the Blast2GO suite. Functional assignments proceed
through an elaborate annotation procedure that comprises a central strategy plus refinement
functions. Next, visualization and data mining engines permit exploiting the annotation results
to gain functional knowledge. GO annotations are generated through a 3-step process: blast,
mapping, annotation. InterPro terms are obtained from InterProScan at EBI, converted and
merged to GOs. GO annotation can be modulated from Annex, GOSIlim web services and
manual editing. EC and KEGG annotations are generated from GO. Visual tools include
sequence color code, KEGG pathways, and GO graphs with node highlighting and filtering
options. Additional annotation data-mining tools include statistical charts and gene set

enrichment analysis functions.
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Fig. 7: Schematic Representation of Blast2GO Application.
The Blast2GO annotation procedure consists of three main steps: blast to find homologous

sequences, mapping to collect GO terms associated to blast hits, and annotation to assign

trustworthy information to query sequences.

Blast Step

The first step in B2G is to find sequences similar to a query set by blast. B2G accepts nucleotide
and protein sequences in FASTA format and supports the four basic blast programs (blastx,
blastp, blastn, and tblastx). Homology searches can be launched against public databases such
as (the) NCBI nr using a query-friendly version of blast (QBlast). This is the default option and
in this case, no additional installations are needed. Alternatively, blast can be run locally against
a proprietary FASTA-formatted database, which requires a working www-blast installation.
The Make Filtered Blast-GO-BD function in the Tools menu allows the creation of customized
databases containing only GO annotated entries, which can be used in combination with the
local blast option. Other configurable parameters at the blast step are the expectation value (e-
value) threshold, the number of retrieved hits, and the minimal alignment length (hsp length)
which permits the exclusion of hits with short, low e-value matches from the sources of
functional terms. Annotation, however, will ultimately be based on sequence similarity levels
as similarity percentages are independent of database size and more intuitive than e-values.

Blast2GO parses blast results and presents the information for each sequence in table format.



Query sequence descriptions are obtained by applying a language processing algorithm to hit
descriptions, which extracts informative names and avoids low content terms such as

“hypothetical protein” or “expressed protein”.
Mapping Step

Mapping is the process of retrieving GO terms associated to the hits obtained after a blast

search. B2G performs three different mappings as follows.

a. Blast result accessions are used to retrieve gene names (symbols) making use of two
mapping files provided by NCBI (geneinfo, gene2accession). Identified gene names are

searched in the species-specific entries of the gene product table of the GO database.

b. Blast result Gl identifiers are used to retrieve UniProt IDs making use of a mapping file
from PIR (Non-redundant Reference Protein database) including PSD, UniProt, Swiss-Prot,
TrEMBL, RefSeq, GenPept, and PDB.

c. Blast result accessions are searched directly in the DBXRef Table of the GO database.
Annotation Step

This is the process of assigning functional terms to query sequences from the pool of GO terms
gathered in the mapping step. Function assignment is based on the gene ontology vocabulary.
Mapping from GO terms to enzyme codes permits the subsequent recovery of enzyme codes
and KEGG pathway annotations. The B2G annotation algorithm takes into consideration the
similarity between query and hit sequences, the quality of the source of GO assignments, and
the structure of the GO DAG. For each query sequence and each candidate GO term, an
annotation score (AS) is computed (see Figure 8). The AS is composed of two terms. The first,
direct term (DT), represents the highest similarity value among the hit sequences bearing this
GO term, weighted by a factor corresponding to its evidence code (EC). A GO term EC is
present for every annotation in the GO database to indicate the procedure of functional
assignment.
DT = max {similarity % BCymeigh )

AT = (#G0 — 17 % Gleign
AR lowestnode(AS(DT + AT) = threshold)

Fig. 8: Blast2GO Annotation Rule
ECs vary from experimental evidence, such as inferred by direct assay (IDA) to unsupervised

assignments such as inferred by electronic annotation (IEA). The second term (AT) of the



annotation rule introduces the possibility of abstraction into the annotation algorithm.
Abstraction is defined as the annotation to a parent node when several child nodes are present
in the GO candidate pool. This term multiplies the number of total GOs unified at the node by
a user defined factor or GO weight (GOw) that controls the possibility and strength of
abstraction. When all ECw’s are set to 1 (no EC control) and the GOw is set to 0 (no abstraction
is possible), the annotation score of a given GO term equals the highest similarity value among
the blast hits annotated with that term. If the ECw is smaller than one, the DT decreases and
higher query-hit similarities are required to surpass the annotation threshold. If the GOw is not
equal to zero, the AT becomes contributing and the annotation of a parent node is possible if
multiple child nodes coexist that do not reach the annotation cutoff. Default values of B2G
annotation parameters were chosen to optimize the ratio between annotation coverage and
annotation accuracy. Finally, the AR selects the lowest terms per branch that exceed a user-
defined threshold.

Blast2GO includes different functionalities to complete and modify the annotations obtained
through the above-defined procedure. Enzyme codes and KEGG pathway annotations are
generated from the direct mapping of GO terms to their enzyme code equivalents. Additionally,
Blast2GO offers InterPro searches directly from the B2G interface. B2G launches sequence
queries in batch, and recovers, parses, and uploads InterPro results. Furthermore, InterPro IDs
can be mapped to GO terms and merged with blast-derived GO annotations to provide one
integrated annotation result. In this process, B2G ensures that only the lowest term per branch
remains in the final annotation set, removing possible parent-child relationships originating

from the merging action.
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Practical Hands-on:Transcriptome Data Analysis and Annotation
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The current ecosystems of RNA-seq tools provide a varied ways analyzing RNA-seq data.
Depending on the experiment goal one could align the reads to reference genome or
pseduoalign to transcriptome and perform quantification and differential expression of genes
or if you want to annotate your reference, assemble RNA-seq reads using a de novo
transcriptome assembler. In this lecture, we focus on workflows that align reads to reference
genomes using updated Tuxedo protocol (HISAT, StringTie, Ballgown) by Pertea et al. This
updated Tuxedo protocol not only scales but is more accurate in detecting differentially
expressed genes (DEGS). Lastly, we used Blast2GO for annotating the identified DEGs.

In this example, we have used the example data which is mentioned in the paper. Before starting
with the actual workflow, we have briefly mentioned the steps required to set up the system.

1) Setting up the system for differential expression analysis of transcriptome data

#for windows system, install linux via wsl.

#install anaconda in linux (Ubuntu)

#open ubuntu terminal

$ wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh
$ bash Anaconda3-2022.10-Linux-x86_64.sh

#set up the conda environment

$ conda env create -f environment_1.yaml

$ conda activate rnaseq_py3

# Set up complete!

1. Protocol:

###Align the data to the reference genome using HISAT2
##build index

(rnaseq_py3) root@DESKTOP-
BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# mkdir index

(rnaseq_py3) root@DESKTOP-
BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# extract_splice_sites.py
resources/chrX.gtf > index/chrX.ss



(rnaseq_py3) root@DESKTOP-
BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# extract_exons.py
resources/chrX.gtf > index/chrX.exon

(rnaseq_py3) root@DESKTOP-
BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# cd index

(rnaseq_py3) root@DESKTOP-
BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example/index# hisat2-build -p 8 --
ss chrX.ss --exon chrX.exon ../resources/chrX.fa chrX_tran

(rnaseq_py3) root@DESKTOP-
BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example/index# cd ..

##1. mapping

$ fastqdir=resources/samples
mapdir=mapped

mkdir $mapdir

hisat2 -p 8 --dta -x index/chrX_tran -1 $fastqdir/ERR188044_chrX_1.fastq.gz -2
$fastqdir/ERR188044 _chrX_2.fastq.gz -S $mapdir/ERR188044.sam

##2. sort mapped files

$ mapdir=mapped

samtools sort -@ 8 -0 $mapdir/ERR188044.bam $mapdir/ERR188044.sam

##3. assembly

gtf=resources/chrX.gtf

assembly=assembly

mapdir=mapped

mkdir $assembly

stringtie $mapdir/ERR188044.bam -1 ERR188044 -p 8 -G $gtf -0 $assembly/ERR188044.gtf

##obtain list of each sample .gtf file in a single file (mergelist.txt)
$ Is assembly/*.gtf > mergelist.txt

##merge .gtf file of each sample



$ stringtie --merge -p 8 -G resources/chrX.gtf -0 stringtie_merged.gtf mergelist.txt
##obtain sequences of transcripts

$ gffread -w transcripts.fa -g resources/chrX.fa stringtie_merged.gtf

##compare merged.gtf file with reference .gtf file

$ gffcompare -r resources/chrX.gtf -G -0 merged stringtie_merged.gtf

##4. abundance estimation

$ abundancedir=abundance

mapdir=mapped

stringtie -e -B -p 8 -G stringtie_merged.gtf -0
$abundancedir/ERR188044/ERR188044 chrX.gtf $mapdir/ERR188044.bam

2. Differential expression analysis

Open R console.
#Differential expression
#load the libraries
library(ggplot2)
library(ballgown)
library(genefilter)
library(RSkittleBrewer)
library(devtools)
library(dplyr)
library(ggrepel)
library(pheatmap)
library(gplots)
library(GenomicRanges)
library(viridis)

#lets load the sample information

pheno_data <- read.csv("resources/geuvadis_phenodata.csv")



#let's show information for first 6 samples

head(pheno_data)

#Load the expression data using ballgown

bg_chrX <- ballgown(dataDir="abundance",samplePattern="ERR",pData=pheno_data)
#L ets filter out transcripts with low variance

#This is done to remove some genes that have few counts. Filtering improves the statistical
power of differential expression analysis.

#We use variance filter to remove transcripts with low variance( 1 or less)
bg_chrX_filt<- subset(bg_chrX,"rowVars(texpr(bg_chrX))>1",genomesubset=TRUE)
#Let's test on transcripts

de_transcripts <-
stattest(bg_chrX_filt,feature="transcript",covariate="conditions",getFC=TRUE,meas="FPK
Mll)

# the results_transcripts does not contain identifiers. We will therefore add this information
#add identifiers

de_transcripts = data.frame(geneNames=ballgown::geneNames(bg_chrX_filt),
genelDs=ballgown::genelDs(bg_chrX _filt), de_transcripts)

# Let's test on genes

de_genes <- stattest(bg_chrX_filt,feature="gene",covariate="conditions",getFC=TRUE,
meas="FPKM")

#lets get the gene names
bg_filt_table=texpr(bg_chrX_filt,'all")
gene_names=unique(bg_filt_table[,9:10])
features=de_genes$id
mapped_gene_names=vector()

for (i in features)

{ query=gene_names%>%filter(gene_id==i & gene_name !'="") ; n_hit=dim(query)[1]; if
(n_hit==1) {mapped_gene_names=append(mapped_gene_names,query$gene_name[[1]]) }
else

{mapped_gene_names=append(mapped_gene_names,".") }



¥

#add the mapped gene names to the de genes table

de_genes$gene_name <- mapped_gene_names

de_genes <- de_genes[, c('feature’,'gene_name','id','fc’,'pval’,'qval’)]
de_genes[,"log2fc"] <- log2(de_genes[,"fc"])

de_transcripts[,"log2fc"] <- log2(de_transcripts[,"fc"])

#Let's arrange the results from the smallest P value to the largest

de_transcripts = arrange(de_transcripts,pval)

de_genes = arrange(de_genes,pval)

#save result in .csv

write.csv(de_genes, "de_transcripts.csv", row.names=FALSE)
write.csv(de_genes, "de_genes.csv", row.names=FALSE)

#Let's subset transcripts that are detected as differentially expressed at qval <0.05
subset_transcripts <- subset(de_transcripts,de_transcripts$qval<0.05)

#do same for the genes

subset_genes <- subset(de_genes,de_genes$qval<0.05)

#create plots

dir.create('plots’)

print(‘generating plots')

#volcano plot
#https://biocorecrg.github.io/CRG_RIntroduction/volcano-plots.html
de_genes$diffexpressed <- "NO"

de_genes$diffexpressed[de_genes$log2fc > 1 & de_genes$pval < 0.05] <- "UP"
de_genes$diffexpressed[de_genes$log2fc < -1 & de_genes$pval < 0.05] <- "DOWN"
de_genes$delabel <- NA

de_genes$delabel[de_genes$diffexpressed = "NO"] <- de_genes$id[de_genes$diffexpressed
1="NO"]



options(ggrepel.max.overlaps = Inf)
png(‘plots/volcano.png’,width = 1800, height = 1000) #,width = 1800, height = 1000

volcano=ggplot(data=de_genes, aes(x=log2fc, y=-log10(pval), col=diffexpressed,
label=delabel)) +

geom_point() +

theme_minimal() +

geom_text_repel() +
scale_color_manual(values=c("blue", "black", "red")) +
geom_vline(xintercept=c(-0.8, 0.8), col="red") +

theme(text=element_text(size=20))

#geom_hline(yintercept=-log10(0.05), col="red")

print(volcano)

dev.off()

#DONE

#MAPLOT

#https://davetang.org/muse/2017/10/25/getting-started-hisat-stringtie-ballgown/

png(‘plots/maplot.png’,width = 1800, height = 1000)

de_transcripts$mean <- rowMeans(texpr(bg_chrX_filt))

maplot=ggplot(de_transcripts, aes(log2(mean), log2(fc), colour = qval<0.05)) +
scale_color_manual(values=c(*"#999999", "#FF0000")) +
geom_point() +
theme(legend.text=element_text(size=20),legend.title=element_text(size=20)) +
theme(axis.text=element_text(size=20),axis.title=element_text(size=20)) +
geom_hline(yintercept=0)

print(maplot)

dev.off()



#DONE

ExitR.

##extract DE transcript sequence by ID

gffread -w transcripts.fa -g chrX.fa stringtie_merged.gtf
#create index of transc.fa

cdbfasta transcripts.fa

cat upl7_id_list.txt |cdbyank transcripts.fa.cidx > up17.fasta

3. Annotation

Functional annotation is defined as the process of collecting information about and describing
a gene's biological identity—its various aliases, molecular function, biological role(s),
subcellular location, and its expression domains within the plant. Blast2GO is a bioinformatics
platform for high-quality functional annotation and analysis of genomic datasets. The
following section mentions the four major modules involved in Blast2GO annotation.

A) Basic Local Alignment Search Tool: to search for similar (or homologous) sequences
as shown in Fig 1.

Figure 1: BLAST

B) InterProScan: for classification of protein families as shown in Fig 2.
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InterProScan
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Blast2GO Mapping: to retrieve Gene Ontology (GO) terms as shown in Fig 3.

Mapping
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Fig 3: Mapping

D) Blast2GO Annotation: to select reliable functions as shown in Fig 4.



 Ovacson 2856 b oraeeny (Wt 7 s o) - a b

Fie Ve iy

0.8.0.0.0.0.0.08. T ——
L TN SRR S — ' P yenp——— 211
iy e - — 1P T e T —— - - ~ v — = Baretmn'® pusot ¥ satete | T teotemmi 1 sumeamem |

LT TR PUS—) 1= 1 ttemms Mg — =N
R L LT —— T - |
' - OmicaBax Resources 1]
| Yo s s (4110

| LA

IR P T e L ] Exampin Daasots

| “-n= Dhawrssat aan g (3amemn @ Ty FIIT) e Luny] TE 18

| Ot (Maaipn 1O TSetswmanat seopymd e emmsde

1 LA B

Eo-n—:.._nm-—-.-—d -

Eml-—lh—-uwm_ﬂm Cor wh hats o P P —

| e >
Lo e b i e e ~ |

G Vet Sep | I

Fig 4. Annotation

Result of Blast2GO:
The result can be visualized in the following forms:
a) Gene Ontology graphs (as shown in Fig 5)

b) Pathway analysis (as shown in Fig 6)

xéne Ontology graphs
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Pathway Analysis
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Fig 6: Pathway Analysis
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Integrated Analysis of multiOMICS Data to Predict the Role of miRNAs
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MicroRNAs (miRNAS) represent a class of small non-coding RNAs that are playing diverse
and pivotal roles in the post-transcriptional regulation of gene expression across various
organisms. miRNAs are 18-23 nucleotide-long molecules. miRNAs are involved in various
fundamental biological processes such as development, differentiation, apoptosis, and
metabolism, highlighting their significance in cellular homeostasis and organismal
development. Dysregulation of miRNA expression has been implicated in various diseases,
including cancer, cardiovascular disorders, and neurological conditions, underscoring their
potential as diagnostic biomarkers and therapeutic targets. Additionally, miRNAs exhibit
evolutionary conservation, with many miRNA families being conserved across species,
reflecting their essential roles in gene regulation and organismal evolution. Overall, miRNAs
represent key players in the intricate regulatory networks governing gene expression and
cellular function, with profound implications for both basic research and clinical applications.

1. Computational tools for miRNA prediction and characterization

miRBase: A comprehensive database for miRNA sequences and annotations. It serves as a
valuable resource for comparing and validating predicted miRNAs.

miRDeep: A widely-used tool for the prediction of novel miRNAs from small RNA
sequencing data. It integrates secondary structure analysis, sequence conservation, and
machine learning algorithms for accurate prediction.

miRanda: This tool predicts miRNA target sites by examining sequence complementarity
between miRNAs and potential target mMRNAs. It considers both sequence complementarity
and conservation across species.

TargetScan: A popular tool for miRNA target prediction, TargetScan predict miRNA target
sites based on seed sequence matches, site accessibility, and evolutionary conservation.
RNAhybrid: A tool for predicting the hybridization energy and the minimum free energy
(MFE) of RNA-RNA duplexes, commonly used to predict potential miRNA-mRNA
interactions.

PITA (Probability of Interaction by Target Accessibility): This tool predicts miRNA target
sites based on thermodynamic stability and target site accessibility, offering a probabilistic
framework for target prediction.

miRDeep2: An updated version of miRDeep, miRDeep2 integrates small RNA sequencing
data with genomic information to predict both known and novel miRNAs with improved
accuracy.

miRPlant: Specifically designed for plant miRNA prediction, miRPlant incorporates features
such as sequence conservation, secondary structure, and thermodynamic stability to identify
potential mMiIRNA candidates in plant genomes.

ShortStack: This tool integrates multiple small RNA sequencing data sets to identify and
characterize miRNAs, including novel miRNASs and their targets, with a focus on plant species.
psRNATarget: A plant-specific tool for predicting miRNA targets, psRNATarget considers
various factors such as target site accessibility and conservation across species to provide
accurate predictions.



2. General workflow for miRNA prediction

i. Data retrieval:

Obtain small RNA sequencing data from the organism of interest. This data can be generated
from high-throughput sequencing platforms such as lllumina or lon Torrent.

ii.  Quality Control:

Perform quality control on the raw sequencing data to remove low-quality reads, adaptors, and
contaminants. Tools like FastQC can be used for this purpose.

iii. Pre-processing:

Trim adapter sequences and filter out reads of inappropriate length. Tools such as Cutadapt or
Trimmomatic can be used for this step.

iv. Mapping to Reference Genome:

Map the pre-processed reads to the reference genome or transcriptome using alignment tools
like Bowtie, BWA, or HISAT.

v. miRNA ldentification:

Use miRNA prediction tools such as miRDeep, miRDeep2, or miRPlant to identify potential
miRNA candidates. These tools integrate various features such as sequence conservation,
secondary structure, and thermodynamic stability to predict miRNAs.

vi. Novel miRNA Prediction:

Identify novel miRNAs by comparing predicted miRNAs with known miRNA sequences from
databases like miRBase. Tools like miRDeep2 and ShortStack often include modules for
predicting novel miRNAs.

vii. Target Prediction:

Predict miRNA target genes using tools like miRanda, TargetScan, or psRNATarget. These
tools analyze sequence complementarity between miRNAs and potential target mRNAs,
considering factors such as seed sequence matches, site accessibility, and evolutionary
conservation.

viii. Functional Annotation:

Annotate predicted target genes to elucidate their biological functions and pathways. Tools
such as DAVID, GO enrichment analysis, or KEGG pathway analysis can be used for
functional annotation.

ix. Experimental Validation:

Experimentally validate predicted miRNAs and their targets using techniques such as qRT-
PCR, luciferase reporter assays, or functional studies in cell lines or model organisms.

X. Integration and Visualization:

Integrate MiRNA prediction results with other omics data (e.g., mMRNA expression data,
proteomics data) to gain a comprehensive understanding of miRNA-mediated regulatory
networks. Visualization tools such as Cytoscape can be used to visualize miRNA-mRNA
interaction networks.

xi. Validation and Interpretation:

Validate predicted miRNAs and their targets using experimental techniques. Interpret the
results in the context of the biological system under study and generate hypotheses for further
investigation.
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Procedure of novel potential miRNA prediction by identifying homologs of previously
known miRNAs in plants (Zakeel et al., 2019)

3 Integrated analysis of multiOMICS data

Integrating miRNA data into genomics, transcriptomics, proteomics, and other -omics data sets
is crucial for a comprehensive understanding of gene regulation and cellular processes. These
are some key applications of miRNA data integration:

Regulatory Network Reconstruction:

Integration of mMiRNA data allows for the reconstruction of regulatory networks encompassing
miRNAs, mRNAs, and proteins. This holistic view enables researchers to unravel complex
regulatory interactions governing cellular processes.Integrating miRNA data with mRNA
expression profiles facilitates the identification of miRNA targets. By correlating changes in
miRNA expression with alterations in mMRNA abundance, putative miRNA-target interactions
can be inferred.

Functional Annotation:

Integrating miRNA data with functional annotation databases (e.g., Gene Ontology, KEGG
pathways) provides insights into the biological functions and pathways regulated by miRNAs.
This aids in understanding the physiological implications of miRNA dysregulation.
Biomarker Discovery:

Integration of miRNA expression data with clinical outcomes or disease states can lead to the
discovery of miRNA biomarkers for diagnosis, prognosis, and treatment response prediction
in various diseases, including cancer and neurodegenerative disorders.

Network Dynamics Analysis:

Integrating miRNA data with dynamic modeling approaches allows for the analysis of network
dynamics and the prediction of regulatory outcomes under different conditions or
perturbations. This aids in elucidating the regulatory mechanisms underlying cellular
responses.

Drug Discovery and Therapeutic Targeting:

Integration of miRNA data with drug response profiles and molecular pathways facilitates the
identification of miRNAs as potential therapeutic targets or biomarkers for drug efficacy. This
can accelerate drug discovery and personalized medicine approaches.



Evolutionary Conservation Studies:

Integrating miRNA data across species enables comparative genomics analyses to identify
evolutionarily conserved miRNAs and their targets. This sheds light on the evolutionary
dynamics of miRNA-mediated gene regulation and functional conservation.

Systems Biology Insights:

Integration of miIRNA data into systems biology frameworks allows for the modeling and
simulation of regulatory networks at a systems level. This integrative approach provides
insights into emergent properties and behaviors of biological systems.

Tools commonly used for integrating omics data with miRNA data:

miRWalk: miRWalk enables the integration of miRNA-target interaction data with gene
expression profiles. It allows users to input miRNA and mRNA expression data to predict
potential miRNA-target interactions and perform functional enrichment analysis.

miRGator: miRGator integrates miRNA expression profiles with mRNA expression data,
protein-protein interaction networks, and pathway information. It enables users to visualize
miRNA-mRNA regulatory networks and identify key regulatory modules.

DIANA-miRPath: This tool integrates miRNA expression data with gene ontology (GO) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to predict the functional
impact of miRNA dysregulation. It identifies enriched biological processes and pathways
targeted by differentially expressed miRNAs.

mIiEAA: miEAA (miRNA-Enriched Annotation Analysis) integrates miRNA expression data
with functional annotation databases, such as GO and KEGG, to identify miRNA-regulated
biological processes and pathways. It prioritizes candidate miRNAs based on their functional
relevance.

TarBase: TarBase provides a curated database of experimentally validated miRNA-target
interactions. It allows users to query miRNA-target interactions based on experimental
evidence and integrates miRNA-target interaction data with other omics data sets for network
analysis.

miRNA Target Filter: This tool integrates miRNA expression data with target prediction
algorithms, such as TargetScan and miRanda, to prioritize miRNA-target interactions based on
expression correlation and target prediction scores. It facilitates the identification of high-
confidence miRNA-target interactions.

miRNet: miRNet integrates miRNA expression data with protein-protein interaction networks,
transcription factor-target interactions, and pathway databases. It enables users to construct and
visualize miRNA-mediated regulatory networks and identify key regulatory nodes.
miRNAtap: miRNAtap integrates miRNA expression data with gene expression profiles,
protein-protein interaction networks, and pathway information. It enables users to identify
dysregulated miRNA-target interactions associated with specific biological processes or
diseases.

These tools facilitate the integration of miRNA data with other omics data sets, enabling
comprehensive analysis of miRNA-mediated regulatory networks and their functional
implications.
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Introduction

In the eukaryotic organisms mainly two kinds of RNAs are occurred: coding, messenger RNA
(mRNA), and non-coding RNA (ncRNA). With the advent of high throughput sequencing
several RNAs have been discovered and are found in cells, such as microRNAs (miRNAS),
long non-coding RNAs (IncRNAs), and circular RNAs (circRNAs), SnoRNA (small
nucleolar), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small interfering RNAs
(siRNAs), small nuclear RNAs (snRNAS), piwi-interacting RNAs (Piwi-RNAs). ncRNA has
little or no protein-coding potential but plays a vital role in various biological processes like
gene regulation, chromosomal structure, genome defence, translation, splicing, DNA
replication, healthy growth and development and stress responses. One of the important
ncRNASs is circRNA, discovered over two decades ago as a special group of RNA transcripts
featuring circular structures. The first identified circRNA was the potato spindle tuber viroid
in 1976. Since, last four decades, circRNAs were often considered as by-products of splicing
or aberrantly spliced products. Recent advancements in high-throughput sequencing
technologies ease the unbiased deep profiling of circRNA landscape in a genome-wide manner.

Subsequently, thousands of circRNAs have been reported in eukaryotes and archaea.

2. Biogenesis of circRNA

CircRNA is an endogenous single-stranded RNA molecule that is generated by the head-to-tail
joining of pre-mRNA (back-splicing). There are three proposed models of circRNA biogenesis:
(i) direct back-splicing, (ii) RNA-binding protein-mediated circularization, and (iii) lariat-
driven circularization [Fig 1]. CircRNAs are generated when the pre-mRNA splicing
machinery back splices to join a down-stream splice donor to an upstream splice acceptor. The
3’ and 5’ ends usually present in a linear mRNA molecule have been joined together covalently
forming a characteristic back-splice junction (BSJ) in circRNA. Further, the U2-dependent
spliceosome is account for the splicing of the vast majority of introns in both plants and
animals, with GT and AG terminal dinucleotides at their 5’ and 3' termini, respectively.
However, in plants, both monocot and dicot species have different mechanism of the splice

signals for circRNAs. Further, only a small portion (7.3%) of circRNAs possess canonical



GT/AG (CT/AC) splicing signals, and a large number of circRNAs share diverse non-GT/AG
splicing signals, such as GC/GG, CA/GC, GG/AG, GC/CG, and CT/CC was reported in plants.
CircRNAs have multiple origin sites; they can originate from multi-exonic transcripts, single
exonic transcripts, uncharacterized transcripts and even fusion genes. In addition, Alternative
RNA processing events have been observed in circRNAs, including exon skipping, intron
retention and alternative splicing. Although most circular RNAs are lowly expressed, some of
them are able to accumulate to high levels and even exceed their cognate mMRNAS due to their
longer half-lives. The majority of circRNAs are ecircRNAs, which are predominantly located
in the cytoplasm. However, ElcircRNAs and ciRNAs are usually located in the nucleus. Once
produced in the nucleus, the majority of circular RNAs are exported to the cytoplasm for their

proper functions or degradation.

Parent gene

. —a_l—H— ]

Base pairing between reverse complementary sequences

Lariat intron Backsplicing Intron retention
Intronic circRNA Exonic circRNA Exon-intron circRNA

Figl: biogenesis of different types of circRNA
3. Types of circular RNA
According to their genomic location, circRNAs are classified into exon, intron, intergenic, and
exon-intron molecules. Intron circRNA mostly regulates its parental gene than exon circRNA.
On the basis of origin of circRNA on the genome, circRNAs were classified into ten types (Fig.

2), at which the two back-splicing sites of a certain circRNA are located.
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Fig2: Types of circRNAs on the basis of their generation from the parent gene. The black, grey
and blank bars represent exons, introns and UTRs, respectively. The green lines represent
intergenic region of the genomes

no. on Type of Type of Origin
fig2 circRNA
1 e-circRNA | two back-splicing sites of a circRNA are both at exons
2 ei-CircRNA | one back-splicing site of a circRNA is at exon while the other is at intron
3 i-circRNA [ two back-splicing sites of a circRNA are both at a single intron
4 ie-CircRNA [ two back-splicing sites of a circRNA are at two different introns across
one or several exons
5 u-circRNA | two back-splicing sites of a circRNA are both at UTRs
6 ue-circRNA | one back-splicing site of a circRNA is at UTR while the other is at exon
7 ui-circRNA | one back-splicing site of a circRNA is at UTR while the other is at intron
8 ig-circRNA [ two back-splicing sites of a circRNA are both at a single intergenic
region
9 igg- one back-splicing site of a circRNA is at intergenic region while the
CircRNA other is at genic region
10 ag-circRNA | two back-splicing sites of a circRNA are at two different genes

4. Characteristics of Plant circular RNAs

The nucleotide length of circRNAs are vary and ranges from <100 nt to >4 kb. They are

conserved and have various isoforms that are generated by alternative circularization in plants.

However, some circRNAs are only observed in certain plant species. The majority of plant

exonic circRNAs contain 1-4 exons and large parental genes with multiple shorter exons are

preferentially circularised. They are less likely to be generated from exon(s) flanked by introns

containing repetitive and/or reverse complementary sequences. In Arabidopsis, out of the 13

validated plant circRNAs, only two (~15%) contain >15-bp reverse complementary sequences

in their flanking introns. Similarly, in cotton (Gossypium sp.), despite circRNAs seem to have

more repeat sequences in their flanking introns than linear genes, only ~10% of exonic

circRNAs are associated with reverse complementary intronic sequences. A recent study in




maize (Zea mays) found that LLERCPs (reverse complementary pairs of LINE1-like elements)
are significantly enriched in the 35-kb, particularly in the 5-kb, flanking regions of circRNAs
20. The study also found that circRNAs with LLERCPs have an expression level significantly
higher than those without LLERCPs nearby, indicating LLERCPs could reinforce the
expression of circRNAs, although the numbers of LLERCPs seem not to be related to the
expression level of circRNAs 20. Because LLERCPs were found in a relatively large flanking
region of circRNAs, it is of interest to know how they are related to circRNA biogenesis. It is
also of interest to know whether repeat sequences located at the flanking introns of circRNAs
are associated with genome complexity so that large and polyploid genomes tend to have more
repeat sequences in their flanking introns of circRNAs. In addition, multiple circRNASs can be
generated from a single parental gene through alternative back splicing and circularization.
Parental genes of over 700 exonic circRNAs (~15% of Arabidopsis circRNAS) are orthologs
between rice and Arabidopsis. Approximately 34% and 55% of circRNA-producing soybean
genes are conserved orthologs in Arabidopsis and rice, respectively. In the context of
expression, they are not highly expressed while few are highly accumulated and exceed their
cognate mMRNAs due to their longer half-lives. Once produced in the nucleus, the majority of
circular RNAs are exported to the cytoplasm for their proper functions or degradation.

5. Functional role of circRNA in plant

(i) Acting as miRNA sponges

The most extensively studied function of circRNAs is microRNA (miRNA) sponging. miRNAs
are small noncoding RNAs that bind to target mMRNAs and typically induce mRNA degradation
or translational repression. Further, circRNAs have been found to bind miRNAs, decreasing
their availability and thereby upregulating the expression of their target mMRNAs. The first cases
of miRNA sponging were discovered for CDR1as, with over 70 conserved target sites for miR-
7, and circSry, with 16 binding sites for miR-138. circRNAs functioning as a miRNA sponge
continue to be frequently documented and reported. However, studies that analysed thousands
of circRNAs found that most contain a smaller number of miRNA binding sites and do not
have other properties of effective miRNA sponges. These findings suggest that the majority of
circRNAs do not act as miRNA sponges, and many studies have revealed other functions

(i1) Regulating transcription and translation

Further studies found that circRNAs perform many other regulatory functions, including
exerting transcriptional and translational control, sequestering and translocating proteins,

facilitating interactions between proteins, and translating to proteins. It was also observed that



some engineered circRNAs having an internal ribosome entry site (IRES) could be translated
and form small peptides in vivo.

(iii) circRNA as biomarkers

circRNAs could also be used as potential biomarkers in plants due to their unique
characteristics, including resistance to degradation, long halflives, and ease the specificity of
detection. Same study was reported in Arabidopsis, circRNAs used as bona fide biomarkers of
functional exon-skipped AS variants, including in the homeotic MADS-box transcription
factor family.
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Fig3: functional role of parental gene of circRNA

(iv) Potential role of circRNASs in stress responses

circRNAs usually exhibit specific cell-type, tissue, and developmental stage expression
patterns, and furthermore, the expression of circRNAs and circRNA isoforms is often induced
under diverse environmental stresses, such as low- and high-light stresses, Pi-starvation
conditions, low temperature stress, dehydration stress, and chewing injury stress by insects,
which suggests that circRNAs might play important roles in plant development or in the
response to biotic and abiotic stresses. Zhao et al discovered total 293 ElcircRNAs, including
183 and 175 in resistant and susceptible samples, under defoliation damage stress by cotton
bollworm feeding in soybean, which indicated that ElcircRNAs might participate in the



response to chewing injury resistance processes in plants. In addition, circRNAs of barley that
are highly expressed in the mitochondria might be participated in micronutrient homeostasis.
(v) Role of circRNA in plant development

The overexpression of PSY1-circl, a circRNA derived from Phytoene Synthase 1 (PSY1) in
tomato, resulted in a significant decrease in lycopene and [-carotene accumulation in

transgenic tomato fruits, which suggests the involvement of circRNAs in plant development.



Table 1: List of tool for the prediction of circRNA

Tool Version | Mapping Address References
tool
CircRNA N/A STAR https://github.com/orzechoj/circRNA_finder Westholm et al.,
finder 2014
CIRCexplorer | 1.1.10 | Bowtiel and | https://github.com/YangLab/CIRCexplorer Zhang et al., 2014
2
CIRI 1.2 Bwa https://sourceforge.net/projects/ciri/files/ Gao et al., 2015
find circ v2 Bowtie2 https://github.com/marvin-jens/find_circ Memczak et al,
2013
Mapsplice 2.2.1 Bowtiel http://www.netlab.uky.edu/p/bioinfo/MapSplice2 | Wang et al., 2010
circseg-cup 1.0 STAR http://ibi.zju.edu.cn/bioinplant/tools/circseq- Yeetal., 2017
cup.htm
KNIFE 1.4 Bowtiel, https://github.com/lindaszabo/KNIFE Szabo et al., 2015
Bowtie2
Segemehl 0.2.0 Segemehl http://www.bioinf.uni- Hoffmann et al,,
leipzig.de/Software/segemehl/ 2014
UROBORUS |0.0.2 Bowtie http://uroborus.openbioinformatics.org/en/latest/ | Song et al., 2016
Bowtie2
tophat2
Table 2: List of plant database of circRNA
Database Organisms URL

PlantcircBase

Camellia sinensis, Pyrus betulifolia, Oryza sativa ssp.

trichocarpa

Oryza sativa, Arabidopsis thaliana, Zea mays, Solanum lycopersicum, Triticum
aestivum, Glycine max, Gossypium hirsutum, Hordeum vulgare, Solanum

tuberosum, Poncirus trifoliate, Gossypium arboretum Gossypium raimondii,

benthamiana,Brassica rapa, Cucumis sativus, Echinochloa crus-galli, Populus

Indica, Nicotiana

http://ibi.zju.ed
u.cn/plantcircb
ase/index.php




AtCircDB Arabidopsis thaliana http://www.deep
biology.cn/circRN
A/
GreenCircRN | Ananas comosus, Amaranthus hypochondriacus, Arabidopsis lyrata, Asparagus http://greencirc
A officinalis, Arabidopsis thaliana, Botryococcus braunii, Brachypodium distachyon, .

Brachypodium hybridum, Brassica oleracea capitate, Brassica rapa FPsc,
Brachypodium stacei, Brachypodium sylvaticum, Cicer arietinum, Citrus
clementina, Capsella grandiflora, Carica papaya, Chenopodium quinoa,
Chlamydomonas reinhardtii, Capsella rubella, Cucumis sativus, Citrus sinensis,
Chromochloris zofingiensis, Daucus carota, Dunaliella salina, Eucalyptus grandis,
Eutrema salsugineum, Fragaria vesca, Gossypium hirsutum, Glycine max,
Gossypium raimondii, Helianthus annuus, Hordeum vulgare, Kalanchoe
fedtschenkoi, Lactuca sativa, Linum usitatissimum, Musa acuminate, Malus
domestica, Manihot esculenta, Mimulus guttatus, Marchantia polymorpha,
Micromonas pusilla CCMP1545, Micromonas sp.RCC299, Medicago truncatula,
Olea europaea, Oryza sativa, Oryza sativa Kitaake, Populus deltoides WV94,
Panicum hallii, Physcomitrella patens, Prunus persica, Populus trichocarpa,
Porphyra umbilicalis, Panicum virgatum, Phaseolus vulgaris, Ricinus communis,
Sorghum bicolor, Setaria italic, Solanum lycopersicum, Spirodela polyrhiza, Salix
purpurea, Solanum tuberosum, Setaria viridis, Triticum aestivum, Theobroma
cacao, Trifolium pratense, Vigna unguiculata, Vitis vinifera, Zostera marina, Zea

mays
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Hands-on-session for circRNA prediction

Kindly see the manual of bwa link is given below:

(https://bio-bwa.sourceforge.net/bwa.shtml)

Kindly download CIRI12 from the link given below:

https://sourceforge.net/projects/ciri/files/CIRI2/

Stepl: bwa index reference_file.fa

Step2: bwa mem index_file fastq_file > input.sam (single end data)
bwa mem index_file readl.fq read2.fq > input.sam (Paired-end data)
Step3: perl CIRI2.pl --help

perl CIRI2.pl -1 input.sam -O circRNA —F reference_file.fa -T 10


https://bio-bwa.sourceforge.net/bwa.shtml
https://sourceforge.net/projects/ciri/files/CIRI2/

In-Silico Identification of Long Non Coding RNAs Playing Key Roles during Different

Physiological Conditions in Livestock

Dr. Shailesh Sharma
National Institute of Animal Biotechnology, Hyderabad

Long non-coding RNAs (long ncRNAs, IncRNA) are one among another types of RNA,
generally defined as transcripts more than 200 nucleotides that are not translated into protein.
Identification and analysis of the expression profiles of key molecular players specifically
IncRNAs involved in host-pathogen interactions and host response against any pathogenic
response like Brucellosis or NDV or during Sex differentiation will be of great value. This
presentation will end up with the holistic view of the key molecular player involved in host-
pathogen interactions and host response against any pathogen. This training will show insights
of the interplay of key molecular players specifically INcRNAs which may play role in
resistance and susceptibility pattern against pathogens. This will surely contribute in the better
understanding of different physiological conditions at genomic level.
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Figure 1: Home made algorithm which will be applied for available SRA datasets. This
algorithm is already applied on ~100 NDV infected Gallus gallus datasets and ~24 Bos taurus
samples and relevant papers are already published.

Theme of Research:

Our team’s research experience spans Genomics, Transcriptomics and Structural
Bioinformatics. We focus on Identification of long non-coding RNAs and genes, deferential
expression analysis, functional annotation, co-expression analysis. Apart from this, we also
perform homology modelling, screening, ADMET analysis and Molecular Dynamics
Simulation.

Objectives:

1. Trachea transcriptome analysis to decipher the host response during Newcastle Disease
challenge in different breeds of chicken.

2. Identification and differential expression of long non-coding RNAs and their association
with genes during early embryonic developmental stages of Bos taurus and Sus scrofa.

3. Deciphering the structure and function of bovine ephemeral fever virus accessory proteins.
4. ldentification of INCRNAs during host response against Bovine tuberculosis in cattle.

5. Sheep breed classification on the basis of phenotypic characters by using Artificial
Intelligence.

6. Identification of role of INcRNASs in Bovine uterine transcriptome response to high fertile

and low fertile semen in cattle.

Recent Work:

1. Trachea transcriptome analysis to decipher the host response during Newcastle Disease
challenge in different breeds of chicken.

Newcastle disease is a highly infectious economically devastating disease caused by Newcastle
disease Virus (NDV) in Gallus gallus (Chicken). Leghorn and Fayoumi are two breeds which
show differential resistance patterns towards NDV. This study aims to identify the
differentially expressed genes and IncRNAs during NDV challenge which could play a
potential role in this differential resistance pattern. A total of 552 genes and 1580 IncRNAs
were found to be differentially expressing. Of them, 52 genes were annotated with both
Immune related pathways and Gene ontologies. We found that most of these genes were
upregulated in Leghorn between normal and challenged chicken but several were down
regulated between different timepoints after NDV challenge, while Fayoumi showed no such
downregulation. We also observed that higher number of positively correlating IncRNAs were
found to be downregulated along with these genes. This shows that although Leghorn is
showing higher number of differentially expressed genes in challenged than in non-challenged,



most of them were downregulated during the disease between different timepoints. With this
we hypothesize that the downregulation of immune related genes and co-expressing INCRNAS
could play a significant role behind the Leghorn being comparatively susceptible breed than
Fayoumi.

2. ldentification and differential expression of long non-coding RNAs and their
association with genes during early embryonic developmental stages of Bos taurus and
Sus scrofa.

Porcine epiblast derived pleuripotent stem cells have application in livestock breeding.

The molecular mechanism involved during pig embryo development is largely regulated by
long non coding RNAS. Here we analyzed the transcriptome data of porcine sScRNA-seq from
four different stages; E11 epiblast cells, E14 somatic cells E14 Primordial germ cells and E31
primordial germ cells to understand the role of long non coding RNAs, their distribution across
the chromosomes over time, their genomic location. The differentially expression profile of the
genes between different time points shows some similarity and aslo differences in expression
for certain genes as the embryo grows from E11 epiblast to E31 primordial germ cells. Further,
we analyzed the differentially expressed long non coding RNAs and their co-expression. The
functional annotation of the differentially expressed IncRNAs and DEGs of the pig early
embryo shows important functions including anatomical structure developmental, cellular
processes, metabolic processes, developmental process.

3. Deciphering the structure and function of bovine ephemeral fever virus accessory
proteins.

Bovine Ephemeral Fever (BEF) virus is an arthropod-borne rhabdovirus that is enclosed in a
cone- or bullet-shaped envelope and contains negative-sense single-stranded RNA. The BEF
virus causes acute febrile illness in cattle and water buffalo, which results in fever, shivering,
lameness, and stiff muscles in affected animals. The genome is comprised of several open
reading frames (ORFs) encoding, structural (N, P, M, G & L), non-structural (GNS), and
several small accessory proteins (al, a2, a3, B, and y). The structural proteins, namely,
nucleoprotein (N, 52 kDa), phosphoprotein (P, 43 kDa), matrix protein (M, 29 kDa),
glycoprotein (G, 81 kDa), and the polymerase or large protein (L, 180 kDa) constitute the
virion. Since some of the accessory proteins might have the feature of viroporin. We are
working on the protein-membrane complex, and we have built the protein-membrane complex
for further study MDS (Fig. 2).



Figure 2

4. ldentification of INcRNAs during host response against Bovine tuberculosis in cattle.

Long non-coding RNAs (IncRNAS) are the transcripts of length longer than 200 nucleotides.
They are involved in the regulation of various biological activities. Bovine tuberculosis, caused
by Mycobacterium tuberculosis bovis (M. bovis), is an important enzootic disease affecting
mainly cattle, worldwide. Despite the implementation of national campaigns to eliminate the
disease, bovine tuberculosis remains recalcitrant to eradication in several countries. Here, we
report the analysis of the transcriptomic data of whole blood cells collected from
experimentally infected calves with a virulent strain of M. Bovis for studying the INcRNAs
involved in regulation of these genes. Using bioinformatics approaches, a total of 51,812
IncRNAs were extracted and 86 and 29 IncRNAs were deferentially expressed from infected
and uninfected calf samples at each of the 8- and 20- w.p.i time points, respectively.

5. Sheep breed classification on the basis of phenotypic characters by using Artificial
Intelligence.

Since a long time ago for the production of wool, meat and milk sheep are farmed by
human being. Currently the worldwide population of sheep is around 1 billion and it is
estimated that they come under 1000 distinct breeds. To estimate the commercial value of
farming, a sheep producer need an automatic method of identification of different breeds which
can be valuable for the sheep industry. An alternative method for breed identification is DNA
testing but it is expensive and sometimes not affordable for a huge population. In this study we
have tried to develop a CNN model and trained it using the facial images of four different
breeds of sheep found in different parts of our country (India). Our aim is to classify these
sheep into their respective breeds on the basis of their phenotypic characters by using artificial
intelligence and deep learning algorithms. Throughout our study, we achieved training
accuracy 97.68% and testing accuracy 82.66%. For more accurate and efficient classification
of breeds we can use this technique in sheep farming for the welfare of both sheep and farmer.



6. Identification of role of IncRNAs in Bovine uterine transcriptome response to high
fertile and low fertile semen in cattle.

Fertility is a vital factor impacting the production of Bos taurus, the widely recognized
domestic cattle and economically significant livestock species worldwide. However,
reproductive efficiency in Bos taurus is hindered by various fertility-related issues, which can
have adverse economic implications. Recent studies have revealed the pivotal role of long non-
coding RNAs (IncRNAs) in governing gene expression and cellular processes, particularly
those involved in fertility. Initially, we have identified a total of 9078 IncRNAs. After
differential expression analysis, in High fertile vs Low fertile groups, we have identified 128
DEGs and 1 DEIncRNA. In High fertile vs Control groups, we have identified 283 DEGs and
20 DEIncRNAs. In Low fertile vs Control groups, we have identified 74 DEGs and no
DEIncRNAs. In comparison with the previous study, in High fertile vs Low fertile groups, out
of 40 DEGs identified in the previous study, 11 DEGs were found to be common with our
study. In High fertile vs Control groups, out of 376 previous DEGs, 58 DEGs were found to be
common. In Low fertile vs Control groups, the 1 DEG identified in the previous study was also
found in our study. In Functional annotation, Cellular Process (GO:0009987) was found to be
annotated to highest percentage of DEGs (21%), followed by, Metabolic Process
(G0O:0008152) with 17% of DEGs and Biological Regulation (GO:0065007) with 12% DEGs.
About 3% of the DEGs were found to be annotated with Immune System Process
(G0:0002376). In pathway annotation, under KEGG pathway categories, highest number of
the annotated pathways (31%) were found to be under Human Diseases and Metabolism
categories, followed by Organismal Systems category with 18% of the pathways. Under
Reactome pathway categories, highest number of the annotated pathways (19%) were found to
be under Signal Transduction category, 18% of the pathways under Immune System category
followed by Metabolism category with 17% of the pathways.We also identified several
DEIncRNAs which were co-expressing with these DEGs. In conclusion, this study shows the
relation of DelncRNAs corresponding to the DEGs and their functions.
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Topics to be covered in this lecture:

* microRNA

* miRDeep2

* miRDeep2 algorithm

* miRDeep2 Workflow

 MiRDeep2 script references

» Analysing and identifying miRNAs from RNA-seq data using the miRDeep2 tool in Galaxy



MiRDeep?2 (Friendlar et al.)

» Developed by Sebastian Mackowiak & Marc Friedlander.

» miRDeep2 discovers active known or novel miRNAs from deep sequencing data
(Solexa/lllumina, 454, ...).

» User-friendly

* Written in Perl
» Tools for read mapping, RNA folding, and calculating the significance of folding energies



Workflow of MiRDeep2 module algorithm
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Analyzing and identifying miRNAs from RNA-
Seq data using the miRDeep2 tool in Galaxy

Raw sequencing reads

4 Mapper N
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MIRDeep2 mapper

 The MiRDeep2 Mapper module is designed as a tool to process deep sequencing reads and/or map them to the
reference genome

Input
» Default input is a file in FASTA format, seq.txt or gseq.txt format. More input can be given depending on the options

used.

1. gseq.txt
HWI6342 131901 TGGAGTGTGACAATGGTGTTTGTCGTATGCCGTCTT BBBBBBEBBEBBBBBBBBBBBBBBBBBBBBBBBBBBB 1

2. FASTQ

>LIV_0_x240
TGAGGTAGTAGGTTGTATAGTT
>HEK_0_x161
TGAGGTAGTAGGTTGTATAGTT

3. arf

LIV_0 x240 18 1 18 tgaggtagtaggttgtat p_chr22
HEK_161_x45 18 1 18 tggagtgigacaatggtg p_chr18

18 233 250 tgaggtagtaggttgtat + 0 mmmmmmmmmmmmmmmmmm
18 258 275 tggagigigacaatggtg + 0 mmmmmmmmmmmmmmmmmm



Output

« The output depends on the options used. Either a FASTA file with processed reads or an arf file with mapped reads, or both, are output.
reads, or both, are output.

* Arf format: This is a proprietary file format generated and processed by miRDeepZ. It contains information of reads mapped to a reference genome. Each
line in such a file contains I3 columns:

« read identifier

* |ength of read sequence

* start position in read sequence that is mapped

« end position in the read sequence that is mapped

* read sequence

« identifier of the genome part to which a read is mapped to. This is either a scaffold id or a chromosome name
* |ength of the genome sequence a read is mapped to

« start position in the genome where a read is mapped to

« end position in the genome where a read is mapped to

* genome sequence to which a read is mapped

o genome strand information. Plus means the read is aligned to the sense-strand of the genome. Minus means it is aligned to the antisense strand of the
is aligned to the antisense strand of the genome.

 Number of mismatches in the read mapping

« Edit string that indicates matches by lowercase 'm' and mismatches by uppercase 'M'



Summary of MiRDeep2 mapper and script

ommands

mapper.

. I mapper ¥ ox
X Upload Data

8} Show Sections

MiRDeep2 Mapper process and map reads fo a
reference genome

eggNOG WMappe oTESEUEnCE annotation

by orthology

Hicup Mapper aligns paired reads independently
to a reference genome and retains reads where
both partners align.

RNA STAR Gapped-read mapper for RNA-seq
data

TopHat Gapped-read mapper for RNA-
seq data

of full-length T- and B-cell
repertoire sequencing

clip_adaptor.p

WORKFLOWS
I All workflows

collapse_reads.

A Workflow

# MiRDeep2 Mapper process and map reads to a reference genome Galaxy Version 2.8.8.8.1)

Deep sequencing reads *

BN D | D - 4: Sample11fastq.gz (as fastqsanger)
accepted formats »

Reads in fastq or FASTA format

Remove reads with non-standard nucleotides

@) No

Remove all entries that have a sequence that contains letters other than a,c,g.tu,nACG T UN. (-]
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@) No

)
Clip 3' Adapter Sequence

Clip Sequence
(k)
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Adapter Sequence can only contain a,c,gtunACGTUN

Discard reads shorter than this length *

18

Set to 8 to keep all reads. (-]

Collapse reads and/or Map

Collapse reads and Map
(-m) and/or {-p)

Will you select a reference genome from your history or use a built-in index?
Use a built-in index

Map to genome. (-p)

Select a reference genome *
Arabidopsis lyrata: Aralyl

If your genome of interest is not listed, contact your Galaxy admin.

Map with one mismatch in the seed (mapping takes longer)
N e

Visualize

Data -

Help ~

lllumina_to_fasta.
pl



mapper. pl

Processes reads and/or maps them to the reference genome.
Input
Default input is a file in FASTA, seq.txt, or gseq.txt format.

More input can be given depending on the options used.

Output

The output depends on the options used (see below).
Either

*a FASTA file with processed reads, or

«an ARF file with mapped reads, or

*Both are output.



Options.

Read input file Preprocessing/mapping
option description option description
: o -h arse to FASTA format
-a input file iIs seq.txt format P
_ - -i convert RNA to DNA alphabet (to map against genome)
-b input file is gseq.txt format
_ remove all entries that have a sequence that contains letters other than a, ¢, g, t,u, n, A,
-c input file is FASTA format = C, G, T, U,or N.
Output files -k <seq> clip 3" adapter sequence
option description -1 <int> discard reads shorter than <int> nts
-s file  print processed reads to this file =~ ™" collapse reads

¢ file print read mappings to this file map to genome (must be indexed by bowtie-build ). The genome string must be the prefix of

-p <genome> the bowtie index. For instance, if the first indexed file is called h_sapiens_37 asm.1.ebwt then the
prefix IS h_sapiens 37 asm .
Other
-G map with one mismatch in the seed (mapping takes longer)
option description
-u do not remove directory with temporary files

-v outputs progress report



clip_adapters.pl

Removes 3' end adaptors from deep sequenced small RNAs.

Input

« A FASTA file with the deep sequencing reads and the adapter sequence (both in RNA or DNA alphabet).
Output

« A FASTA file with the clipped reads.

 FASTA IDs are retained. If no matches to the adapter prefixes are identified in a given read, the unclipped read

clip adapters.pl reads.fa TCGTATGCCGTCTTCTGCTTGT > reads clipped.fa



collapse_reads.pl

Collapses are read in the FASTA file to ensure that each sequence only occurs once. To indicate how
many times reads the sequence represents, a suffix is added to each FASTA identifier. £.g. a sequence

that represents ten reads in the data will have the _x10 suffix added to the identifier.

Input

*A FASTA file, either in standard format or in the collapsed suffix format.

Output
A FASTA file in the collapsed suffix format.

collapse reads.pl reads.fa > reads _collapsed



illumina_to_fasta.pl

» parses seq.txt or gseq.txt output from the Solexa/lllumina platform to FASTA format.
Input

 Aseq.txtor

« gseq.txt file.

« By default seq.txt.

Output
A FASTA file, one entry for each line of seq.txt.

* The entries are named seq plus a running number that is incremented by one for each entry. Any . characters in
the seq.txt file is substituted with an N.

option description

-a format is gseq.txt



MiRDeep2 quantifier

The module maps the deep sequencing reads to predefined miRNA precursors and determines the expression of the
corresponding miRNAs. First, the predefined mature miRNA sequences are mapped to the predefined precursors.
Optionally, predefined star sequences can be mapped to the precursors too. By that, the mature and star sequence in
the precursors are determined. Second, the deep sequencing reads are mapped to the precursors. The number of

reads falling into an interval 2nt upstream and 5nt downstream of the mature/star sequence is determined.
Input

A FASTA file with precursor sequences, a FASTA file with mature miRNA sequences, a FASTA file with deep

sequencing reads, and optionally a FASTA file with star sequences and the 3-letter code of the species of interest.
Output

A tab separated file with miRNA identifiers and their rated read count, a signature file, an HTML file that gives an
overview of all miRNAs the input data, and a pdf that contains for each miRNA a pdf file showing its signature and

structure.



MiRDeep2 quantifier example output

Provisional ID :chrl7 967
Score total ;o 310908
Score for star read(s) - 39 5 ge
Score for read counts  © 31080.6 - uc
Score for mfe : 1.7 s B W \ ‘-rl fi‘ uLc uc o9y
Score for randfold J 1.6 = c v+—gg9 a-a g r| g' a C,‘ gl [ I
Secore for cons. seed 1 3 g ag u =
Total read count : 60975
Mature read count : 606TE
Loop read count ] 18
Star read count B 279
frag.
F
1 o= f
0,75
0, Segm
0.25%9
o . ____________________________________N
1 22 37 56 length
Star Mature

5'- ggoguugcuuggougoaacugocogucagccavugaugaucguucuucucucogu gyagagaacgoggucugagugguuuuuccuucuugaugy -3° cbs



MiRDeep2 quantifier script reference

quantifier.pl

The module maps the deep sequencing reads to predefined miRNA precursors and determines by that the
expression of the corresponding miRNAs.

Input

*A FASTA file with precursor sequences,

*a FASTA file with mature miRNA sequences,

«a FASTA file with deep sequencing reads, and

«optionally a FASTA file with star sequences and the 3 letter code of the species of interest.
Output

*A 2 column table file called miRNA_expressed.csv with miRNA identifiers and its read count,
-a file called miRNA_not_expressed.csv with all miRNAs having 0 read counts,

a signature file called miRBase.mrd,

-a file called expression.html that gives an overview of all miRNAs the input data, and

«a directory called pdfs that contains for each miRNA a PDF file showing its signature and structure.



option
-p [file.fa]
-m [file.fa]
-p
-C [file]
-5 [star.fa]

-t [species]

-y [time]

description
miRNA precursor sequences (around 70bp: One line per precursors sequence)
mature miRNA sequences (around 22nt)
specify this option of your mature miRMNA file contains 5p and 3p ids only
config.txt file with different sample ids... or just the one sample id -- deprecated
optional star sequences from miRBase
e.g. Mouse or mmu
if not searching in a specific species all species in your files will be analyzed
else only the species in your dataset is considered
optional otherwise its generating a new one
if parameter given pdfs will not be generated, otherwise pdfs will be generated
if parameter is given reads were not sorted by sample in pdf file, default is sorting
also considers precursor-mature mappings that have different ids, eg let/c
would be allowed to map to pre-let7a
do not do file conversion again
do not do mapping against precursor again
number of allowed mismatches when mapping reads to precursors, default 1
number of nuclectides upstream of the mature sequence to consider, default 2
number of nucleotides downstream of the mature sequence to consider, default 5
do not create an output.mrd file and pdfs if specified
read counts are weighed by their number of mappings. e.g. A read maps twice so each position
gets 0.5 added to its read profile
use only unique read mappings; Caveat: Some miRMAs have multiple precursors. These will be
underestimated in their expression since the multimappers are excluded

list all values allowed for the species parameter that have an entry at UCSC
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MiRDeep?2 script reference

miRDeep2 analyses can be performed using the three scripts miRDeep2.pl, mapper.pl and quantifier.pl.
miRDeep2.pl : Wrapper function for the miRDeep2.pl program package. The script runs all necessary scripts of the
miRDeep2 package to perform a microRNA detection deep sequencing data analysis.

Input

*A FASTA file with deep sequencing reads,

«a FASTA file of the corresponding genome,

-a file of mapped reads to the genome in miRDeep2 ARF format,

«an optional FASTA file with known miRNAs of the analyzed species, and

«an optional FASTA file of known miRNAs of related species.

Output
*A spreadsheet and
«an HTML file

with an overview of all detected miRNAs in the deep sequencing input data.



Options

option description

minimum read stack height that triggers analysis. Using this option disables automatic

@ ane estimation of the optimal value.

b cints minimum score cut-off for predicted novel miRNAs to be displayed in the overview table. This
score cut-off is by default 0.

-c disable randfold analysis

-t <species> species being analyzed - this is used to link to the appropriate UCSC browser

-u output list of UCSC browser species that are supported and exit

-v remove directory with temporary files

= miRBase.mrd file from quantifier module to show miRBase miRNAs in data that were not scored

by miRDeep2



Examples

» For example: The user wishes to identify miRNAs in mouse deep sequencing data, using default options. The

miRBase_mmu_v14.fa file contains all miRBase mature mouse miRNAs, while the miRBase_rno_v14.fa file contains all

the miRBase mature rat miRNAs. The 2> will pipe all progress output to the report.log file.

miRDeep2.pl reads collapsed.fa genome.fa reads collapsed vs genome.arf \
miRBase mmu v14.fa miRBase rno vl4.fa precursors ref this species.fa \
-t Mouse 2>report.log

This command will generate

« adirectory with PDFs showing the structures, read signatures, and score breakdowns of novel and known miRNAs in the

data,
« an HTML webpage that links to all results generated (result.html),

» a copy of the novel and known miRNAs contained in the webpage but in text format which allows easy parsing

(result.csv),
» a copy of the performance survey contained in the webpage but in text format (survey.csv), and

e 12 conv of the MmiRNA read <ianatuures contained in the PDF< but in text format (otitott mrd)



Example 2

The user wishes to identify miRNAs in deep sequencing data from an animal with no related species
in |
miRDeep2.pl reads collapsed.fa genome.fa reads collapsed vs genome.arf \

none none none 2>report.log

« This command will generate the same type of files as in the example before. Note that there it will in
practice always improve miRDeep2 performance if miRNAs from some related species is input,

even if it is not closely related.



RNAfold

» Main secondary structure prediction
tool

= Computes the minimum free energy
(MFE) and backtraces an optimal
secondary structure.

$ RNAfold -p < Example.fa

>Examplel

GCGACCCAUGCGAACGCGAGCAUUUGAAGCUAGAUGCCGUUUUGAAACGAAUGGGAACGCGAACGC

COCCCCCCL (OO (O CCCCCCCcc NN N eea DDAV eI evvans (-19.50)

CCC, COCCC COEHL CCCCCCCCCCa s DININNY BT 0000040000 )660) ) 0 00000 [-20.45)

CCC CCCCC. CCCC. (O CCCCCCC..IDMIN DI eeed) NN D)) enies {-19.50 d=2.85}

frequency of mfe structure in ensemble 0.212986; ensemble diversity 4.22

$ Utils/mountain.pl Examplel_dp.ps

30
[ — base pair probability
20 - = minimum free energy
-~ positional entropy
10 —
0 1 AL=""Ne____| I S N p— N 1 1
0 10 20 30 40 50 60

$ Utils/relplot.pl Examplel_ss.ps Examplel_dp.ps > Examplel_rss.ps
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Output

miRDeep2

Survey of miRDeep2 performance for score cut-offs 0 to 10

)
5!

novel miRNAs known miRBase miRNAs
miRDeep2 scoreLpredicted by miRDeep2|estimated false positiveslestimated true positives|in species|in datajdetected by miRDeep2[estimated signal- to- noise|excision EearingI
10 95 8+3 87 +3 (91 +3%) 914 572 407 (71%) 32.3 4
100 8+3 92 + 3 (92 = 3%) 914 572 408 (71%) 32.1 4

8 110 9+3 101 £ 3 (92 £ 3%) 914 572|411 (72%) 32.2 4

7 119 9+3 110 =3 (92 + 2%) 914 572 411 (72%) 32.1 4
|6 124 9+3 115+ 3 (92 +2%) 914 572 411 (72%) 31.3 4

5 149 11£3 138 + 3 (92 + 2%) 914 572 454 (79%) 29 4

4 173 224 151 =4 (87 +2%) 914 572 475 (83%) 19.9 4

3 192 58+ 7 134 + 7 (70 + 4%) 914 572 [478 (84%) 9.3 4

2 227 76 =8 151 = 8 (67 + 4%) 914 572 489 (85%) 7.5 4

1 335 107+9 228 + 9 (68 + 3%) 914 572 511 (89%) 6.2 4
10 397 361 =17 36+ 17 (9 = 4%) 914 572 514 (90%) 2.2 4

Novel miRNAs predicted by miRDeep2

. . total mature loop star Islgniﬁclntl :lxi:;glsee
provisional id mi:lcl:::pz csﬁm:t.c:d;i);::):il; 'fz::‘;;:‘i:i":m‘\" :::' read read read read | randfold '::::{B;:e miRNA with lb‘:ﬁ:: ;f:: cons::;:::::ture star seq
count count count || count | p-value th: esea:'me

Hs7 7976_12459 |[4.2¢ +2 0.91+ 0.03 830 734 |0 96 yes ugucuuacucccucaggeacau flagugccugagggaguaagag
Hs13 24680 20135[2.8¢+2 [ 0.91 0.03 566 442 Jo 124 |yes uguug luuguue gcecaacceu
Hs3_5769_6412 2.0¢ +2 0.91+ 0.03 392 345 IO 47 chs caaaaacugcaauuacuuuuge flgaaaguaauugeuguuuuugee
Hs2_5560_3658 1.8¢ 42 0.91+ 0.03 365 334 IO 31 yes 2 agaaguaauugeggucuuugee
Hs4_16510_7415 [1.7e +2 0.914 0.03 336 243 Il 92 yes |[caaaaacugcaguuacuuuuge Iaaaagugauugcaguguuugcc
Hs13_24654_19774)1.1e +2 091+ 0.03 223 151 lo 72 yes ptr- miR-S48h |laaaaguaauugcaguuuuuge  fuasaacugcaguuavuuuuge
Hsl4_26604_21006]1.0e +2 0.91+ 0.03 205 99 lo 106 lyes tptr- miR-548h| [[aaaag gl gee [lcaaaaaccgugauuacuuuuge
Hsll 9141 16854 [8.9¢+1 0.91+ 0.03 175 142 12 31 yes luucucuauag_gaagccauagca Juaug cugaggag
Hs10 8862 16763 |[7.1e +1 0.91+ 0.03 140 135 IO 5 yes |luugugaagaaagaaauucuuac laagaauuucuuuuucuucacaauul
Hs13_10109_19638](6.2¢ +1 0.91+ 0.03 120 (63 IO 57 yes ceac guuugu [aaaaguaauugcggguuuugee
HsX_ 11826 27786 4.9¢ +1 091+ 0.03 88 75 Jo 13 yes Jopy- miR-655 - J|auaauacaaccugcuaagug cuuagcagguuguauuau
Hsi_4993_ 2598 4.4¢ +1 0.91+ 0.03 1186 f|64 IO 22 yes ucugugagaccaaagaacuacu _ juuguucuuuggucuuucagee
Hs6_7749_10863 |4.1¢ +I1 0.91+ 0.03 30 l60 IO 20 yes ucagguguggaaacugaggcaggjugcucagguugeacageuggga
Hsll 34082 IS138|3.8¢ +1 | 0.91+ 0.03 73 [37 0 36 ves [uaugguacuccuuaag _1umgcu:l§g_gaguaccag_a;c:—.
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Introduction

DNA

 double stranded, helical structure

Sugar
—— Phosphate
Backbone

Base pair

e sequences of nucleotides (A, T, G & C)
* Dbase pairs (A with T and G with C)

Adenine

Thymine

Guanine

Cytosine



Introduction...

Central Dogma of Molecular Biology

The Central Dogma. This states that once ‘information’ has passed into
protein it cannot get out again. In more detail, the transfer of information from
nucleic acid to nucleic acid, or from nucleic acid to protein may be possible,
but transfer from protein to protein, or from protein to nucleic acid is
Impossible. Information means here the precise determination of sequence,
either of bases in the nucleic acid or of amino acid residues in the protein.
[Francis Crick,1958]

The central dogma of molecular biology deals with the detailed residue-by-
residue transfer of sequential information. It states that such information
cannot be transferred back from protein to either protein or nucleic acid.
[Francis Crick, re-stated in a Nature paper, 1970]
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Central Dogma of Molecular Biology
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Introduction...

= The advent of Next-Generation Sequencing (NGS) technology has
transformed genomic studies.

= One important application of NGS technology is the study of the
transcriptome.

= Transcriptome is defined as the complete collection of all the RNA
molecules in a cell.



Introduction...

Different types of RNA

| tRNA
mRNA (transfer RNA)
| (messenger RNA)
‘ Housekeeping ncRNA } ‘
L rRNA
(ribosomal RNA)
RNA i’
ncRNA | ] IncRNA
| (non-coding RNA) (long non-coding RNA)
miRNA
(microRNA)
~| Regulatory ncRNA F SnRNA
(small nuclear RNA)
| snoRNA
(small nucleolar RNA)
small ncRNA |
(small non-coding RNA) GiIRNA

(small interfering RNA)

piRNA
| (PTWI-interacting RNA)

= All of these molecules are called transcripts since they are produced by
process of transcription.

= ~ 2% mRNA



Introduction...

= RNA-Sequencing uses NGS technology to reveal the presence and
guantity of RNA in a biological sample at a given moment.

= |t allows transcript quantification and differential gene expression
analysis.

= Several machines/ protocols are available for generating RNA-Seq
data:

lllumina (MiSeq, NextSeq, HiSeq, NovaSeq)

lon Torrent (Proton, Personal Genome Machine)

SOLID

Roche 454



Introduction...

* Important steps of RNA-Seq experiments:

« Data generation (experimental design, sample collection, sequencing
design, quality control)

« Quantification of reads to estimate the expression values
* Normalization

+ Differential expression analysis



Introduction...

= Applications of RNA-Seq experiments

« Quantification of transcriptome/RNA-Seq expression levels to study
gene expression in complex experiments

* Novel gene discovery
 Gene annotation

« Detection of differentially expressed features (genes/ transcripts/
exons) between different conditions

« Detection of splicing events

* |dentification of introns and exon boundaries



Bioinformatics Tools for NGS data preprocessing

Tools for quality check/ filtering/ trimming

= FASTQC - A quality control tool for high throughput sequence data
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
= NGS QC - Quality Control

» FastqCleaner — A shiny app for Quality Control, Filtering and
Trimming of FASTQ Files

* Trimmomatic — Trimming of FASTQ files



Bioinformatics Tools for NGS data preprocessing...

FASTX toolkit — A collection of command line tools for Short-Reads
FASTA/FASTQ files preprocessing

(http://hannonlab.cshl.edu/fastx_toolkit/)

ShortRead — R package for filtering and trimming reads, and for

generating a quality assessment report



Bioinformatics Tools for NGS data preprocessing...

Samtools: A suite of programs for interacting with high-throughput
sequencing data (http://www.htslib.org/)

Three separate repositories:

« Samtools - Reading/writing/editing/indexing/viewing SAM/BAM
format
« BCFtools - Reading/writing BCF2/VCF/gVCF files and

calling/filtering/summarising SNP and short indel sequence variants
« HTSIib - A C library for reading/writing high-throughput sequencing

data



Bioinformatics Tools for NGS data preprocessing...

Short read aligners

Bowtie

= TOPHAT
= BWA

= Novoalign

= STAR



Bioinformatics Tools for NGS data preprocessing...

de novo assemblers

= SOAPdenovo-Trans
= Trans-AbySS

= Trinity

= SPAdes

Tools for Visualization
= CummeRbund

= |GV

= Bedtools

= UCSC Genome Browser



Experimental design and heterogeneity issues
* The purpose of experimental design is to plan experiment in an effective
way so that it can answer the biological question under consideration.

(i) Biological aspects:
« Any biological experimental plan starts with a biological question or
hypothesis.
* The experimenter might have some prior knowledge of the question
under study before conducting the experiments, e.g., expression
levels of some known genes, proteins, etc.

(i1) Technical aspects:
» These include the choice of platform and avoiding systematic errors.
« If the experiment has systematics errors, then the result obtained for
comparative analysis will be biased, irrespective of the precision of
measurement and the number of experimental units.
(ili) Economic aspects:
» Cost of experiment and its analysis
* Budget available
« Time required to complete the experiment and its analysis
« Whether pilot study is required or not, etc.



Experimental design and heterogeneity issues...

Other points to be considered:

« Availability of enough samples for experiment;

« Availability of enough RNA, DNA or proteins from samples;
* Biopsies collected from same part of tissue or other tissues;
* Number of replicates required,;

- Effect size, etc.

Heterogeneity

* A heterogeneous sample or population means that every observed data
has different value for the corresponding characteristic of interest.

* There may be various factors responsible for influencing expression in
any feature.

* The major sources of variations are due to technical, genetic,
demographic and environmental factors.



Experimental design and heterogeneity issues...

= There are two important points to be considered while designing RNA-
Seq experiments which are namely, the sequencing depth and the
number of replicates (biological and technical) required to observe
significant changes in expression.

= The cost can be reduced by optimizing the designing process of these
experiments.

= Tools and software for sample size estimation and power analysis:
 RNASeqgPowerCalculator
* RNASegPower
« Scotty
« PROPER



RNA-Seq Experiments

* The basic steps for summarizing a typical RNA-Seq experiment:

« Purified RNA is converted to cDNA, fractionated, ligated with
technology specific adapters and sequencing is done.

« Millions of short read sequences are generated from one end (single-
end) or both ends (paired-end) of the cDNA fragments.

* These sequences are aligned to a reference genome.

« The number of reads mapped to known features are recorded and
summarized in a table.

* The features can be either genes, transcripts (alternative transcripts) or
exon level expression.



RNA-Seq Experiments...

Example of a biological experiment with I conditions/groups denoted by
G;(i=1,2,..,1) having N; individuals/samples denoted by S;;(j =

G, G; G,
Sl’l e Sly]‘ wee 51,N1 Si,l e Si'j es Si,Ni SI'l es Sl’]' ) SI‘N’
Fyq Y111 Vi,j1 YinN,1 Vi1 YVija YiN;1 Vi1 Yij1 YIN;1
Fy Y11,k Yi,jk Yi,N k YVilk Yijk YiN;k Vi1k Yijk | YNk
Fg V11K Y1,j,K V1,N,,K YVi1k - | Yijk YViN; K YVi1,K - | Yjk « | YINpLK




RNA-Seq Experiments...

A table of read counts for a hypothetical case-control study

Conditions/ Treatment groups
C,(Case) C,(Control)

Samples

= 51.1 Sl.'..' sl.j Sl.ul sz_j 53_: -5';“ .5'1,.,2

Genes ‘,

G, 21 30 | .| 256 | .. S 65 | 61 | .| 52 | .| 25
G, 0 3 |..] 1 w| 0 I 2 || 0 |..|] 6
G, 198 | 122 | .. 162 | ...| 51 302|245 ..1102 | .| 29
Gy 2 1 0 1 1 0 0 1




Transcript quantification

= The most common application of RNA-seq is to estimate gene and
transcript expression.

= This application is primarily based on the number of reads that map to
each transcript sequence.

= The simplest approach to quantification is to aggregate raw counts of
mapped reads using programs such as HTSeq-count or featureCounts.

= Metrics to normalize data considering the gene length and sequencing
depth

« RPKM (reads aligned per kilobase of exon per million reads mapped)
 FPKM (fragments per kilobase of exon per million fragments mapped)
« TPM (transcripts per kilobase million)

= Normalization is required before performing the differential expression
analysis.



Transcript quantification...

= htseg-count

= featureCounts
= Cufflinks

= Stringtie

= RSEM

= Sailfish



Differential Expression Analysis

= One of the primary goals for RNA-seq experiments is to compare the
gene expression levels across various experimental conditions,

treatments, tissues, or time points.

= The researchers are particularly interested in detecting gene with

differential expressions.

= The study of determining which genes have changed significantly in
terms of their expression across two or more conditions is referred to

as differential expression analysis.

= |dentification of differentially expressed genes helps researchers to

understand the functions of genes in response to a given condition.



Differential Expression Analysis...

= A large number of statistical models and tools have been developed to
perform differential expression analysis for RNA-Seq data.

= Differential expression analysis methods for RNA-Seq can be grouped
Into two broad categories:

» Parametric method
* It captures all information about the data within the parameters.

« Each expression value for a given gene is mapped into a particular
distribution, such as Poisson or negative binomial.

» Non-parametric method
* A non-parametric model uses a flexible number of parameters.
« The number of parameters often grows as it learns from more data.

* A non-parametric model is computationally slower, but makes fewer
assumptions about the data.



RNA-Seq Experiments...

Estimation of parameters based on NB distribution

* The estimation of parameters is an essential step for design, sample size
calculation and differential expression analysis.

* The parameter estimation can be done by using various methods such as
method of moments estimation (MME), maximum likelihood estimation
(MLE), maximum quasi-likelihood estimation (MQLE).

» Besides these methods, there are various methods/models for estimation
of parameters such as pseudo-likelihood, quasi-likelihood, conditional
maximum likelihood (CML), conditional inference, quantile-adjusted CML,
conditional weighted likelihood.



RNA-Seq Experiments...

Estimation of parameters based on NB distribution without scaling factor
= Let Y¥;; be a NB random variable with mean y; and dispersion parameter
¢i, i.e., Y;i~NB(u;, ¢;), then its plrobability mass function is given by
ru+g)  Guaos
p( Yij) 1
d (d) )F(ylf +1) (1 + )"
* The likelihood function is given by

N; 1
L, dilyijs j=1,2,...,N;) = 1_[ F<y” 5> (u; i)Y
i PilYij, Sy 2N ]1F<¢>F(yl]+1)(1+,ul¢)yl] %

* The log-likelihood function is given by
l(u}vqbllyu, Jj=12,..,N)

l

zlnr(yl, )_z (5)- zlnrwl)

It N; /=1

+ z yijIn(u;¢;) — z < a) In(1 + p;¢;)
j=1 j=1

=0,1,2,..

—



Differential Expression Analysis...

Read count distribution Normalization Differential analysis test
assumption/model

edgeR Negative binomial distribution TMM/ Upper quartile / RLE / Exact test analogous to
None (all scaling factors are set Fisher’s exact test or
to be one) likelihood ratio test
Negative binomial distribution DESeq size factors Exact test analogous to
Fisher’s exact test
Negative binomial distribution DESeq size factors Wald test
baySeq Negative binomial distribution Scaling factors (quantile/ TMM/  Posterior probability
total) through Bayesian approach
EBSeq Negative binomial-beta empirical DESeq median normalization
Bayes model
Non-parametric method Based on the read count mean Wilcoxon rank statistics

over the null features of data set. based permutation test

Non-parametric method RPKM / TMM / Upper quartile Corresponding logarithm of
fold change and absolute
expression differences have
a high probability than
noise values

Similar to t-distribution with TMM Moderated t-test

empirical Bayes approach

limma+voom



Differential Expression Analysis...

Tools for Differential Expression Analysis
= Cufflinks package

* R packages: DESeq, DESeq2, edgeR



edgeR for RNA-Seqg Data Analysis

1. Download and Install R

https://cran.r-project.org/bin/windows/base/

2. Download and Install RStudio

https://www.rstudio.com/products/rstudio/download/#download

3. Open RStudio

4. Install the required R packages: Here, we will install edgeR.

If (IrequireNamespace("BiocManager", quietly = TRUE))
Install.packages(""BiocManager")

BiocManager::install("edgeR")


https://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/products/rstudio/download/#download

edgeR for RNA-Seq Data Analysis...

https://bioconductor.org/packages/release/bioc/html/edgeR.html

Example: A paired design RNA-seq experiment of oral squamous cell

carcinomas and matched normal tissue from three patients

= The aim of the analysis is to detect genes differentially expressed between

tumor and normal tissue, adjusting for any differences between the patients.

= RNA was sequenced on an Applied Biosystems SOLID System 3.0 and reads
mapped to the UCSC hgl8 reference genome.

= Read counts, summarised at the level of refSeq transcripts are available in
Table S1 of Tuch et al.

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824832/).


https://bioconductor.org/packages/release/bioc/html/edgeR.html

Online Tool for RNA-Seq Data Analysis

http://bioinformatics.sdstate.edu/idep/

https://kcvi.shinyapps.io/START/



http://bioinformatics.sdstate.edu/idep/
https://kcvi.shinyapps.io/START/
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Protein Primary Structures

Amino acid sequence of a
polypeptide chain.

20 amino acids, each with a
different side chain (R).

Peptide units are building blocks of
protein structures.

The angle of rotation around the

N-C. bond is called phi (), and the
angle around the C,-C' bond from peptide plane
the same C, atom is called psi (v).

(Brandon and
Tooze, 1998)




Protein Secondary Structures

* Local substructures as a result of hydrogen bond
formation between neighboring amino acids
(backbone interactions).

+ The amino acid side chains affect secondary
structure formation.

- Types of secondary structures:
- a helix,

- B sheet,

- Loop or random coil.



a Helix
Most abundant secondary structure.

3.6 amino acids per turn, and hydrogen bond formed between
every fourth residue.

Often found on the surface of proteins.

right-handed alpha-helix \
x Z‘_ \ residue i+ 8

dot rows 5 '
hydrogen bonds( residue i

Michael Summers, HHMI at UM BC



B Sheet

Hydrogen bonds formed between adjacent polypeptide
chains.

The chain directions can be same (parallel sheet), opposite
(anti-parallel), or mixed.




Loop or Coil

Regions between a helices and B sheets.
Various lengths and 3-D configurations.

Often functionally significant (e.g., part of an active site).

crevice

The active site of
open a/p-barrel
structures is in a
crevice outside the
carboxy ends of the f
strands.

(Brandon and Tooze, 1998)




Protein Tertiary Structure

The 3-D structure of a protein is assembled from different
secondary structure components.

Tertiary structure is determined primarily by hydrophobic
interactions between side chains.

Different classes of protein structures:

All o All B Mixe

Hemoglobin (3HHB) T cell CD8 (1CD8) Thermolysin (7TLN)



Protein Tertiary Structure (Cont'd)

Fold: a certain type of 3-D arrangement of secondary
structures.

Protein structures evolves more slowly than primary amino
acid sequences.

Four-helix bundles Three-helix bundle

EX

E. coli cytochrome Human growth Drosophila engrailed
b562 (256B) hormone (IHUW) homeodomain (1ENH)




Protein Quaternary Structure

- Two or more independent tertiary structures are assembled

info a larger protein complex.

+ Important for understanding protein-protein interactions.

Horse spleen ferritin (1IES)

E. coli
ribosome
(1IML5)



Information Transfer pathway within the cell

...... ATGCATGCATGCATGCATGC. .

.... ..@GUACGW‘W. DNA
......... CGUACGUACGUACGU...../.... RNA

N\. PROTEIN Sequence

@. PROTEIN Structure

Biological function




From Sequence to Structure

Protein structure is hierarchic:

Primary - sequence of covalently attached amino acid

Secondary - local 3D patterns (helices, sheets, loops)

Tertiary - overall 3D fold

Quaternary - two or more protein chains




Motivation to Acquire a Structure

Identifying active and binding sites

Characterization of the protein's mechanism (catalysis & interactions)
Searching for ligand of a given binding site

Understanding the molecular basis of diseases

Designing mutants

Drug design

And more...



Similar Protein Structure
Available . Not Available
Threading

A 4




General Scheme

Searching for structures related to the query sequence
Selecting templates
Aligning query sequence with template structures

Building a model for the query using information from the template
structures

Evaluating the model



What is Homology Modeling?

An approach to predict a model of the three-
dimensional structure of a given protein
sequence (TARGET) based on an alignment to

one or more known protein structures
(TEMPLATES)

The homology modeling method is based on the
assumption that the structure of an unknown
protein is similar to known structures of
reference proteins



Why a Model?

A model is desirable when either X-ray crystallography or
NMR spectroscopy can not determine the structure of a
protein in time or at all.

While the 3-D structure of proteins can be determined by
x-ray crystallography and NMR spectroscopy. These
experimental techniques are time consuming and not
possible if a sufficient quantity and quality of a proteins is
not available.

The built model provides a wealth of information of how
the protein functions with information at residue property
level. This information can than be used for mutational
studies or for drug design..



Protein Structure
Determination

e High-resolution structure determination
- X-ray crystallography (~1A4)
- Nuclear magnetic resonance (NMR) (~1-2.5A)

e Low-resolution structure determination
- Cryo-EM (electron-microscropy) ~10-154




X-ray crystallography

most accurate
An extremely pure protein sample is needed.

The protein sample must form crystals that are
relatively large without flaws.

Many proteins aren't amenable to crystallization at all
(i.e., proteins that do their work m5|de of a cell
membr'ane) B~

~$100K per structure




Nuclear Magnetic Resonance

e Fairly accurate
e No need for crystals

e |imited to small, soluble proteins only.




Steps in homology modelling

Target's sequence

. Identification of structures that will form the template
for modelling

. Sequence Alignment of the target with template

. Transfer of the coordinates from the template(s) to the
target of structurally conserved regions (SCR's)

. Modelling the missing regions

. Refinement and validation of the model

Target’'s structure



Template search

* Homology modeling is based on using similar structures
i.e. no Similar structures = No Model

* 407% amino acid identity or higher is best; below that is
not advisable but examples of success do exist

* Need sequence similarity across the whole sequence,
not just in one part



Sequence Alignment

GGTGGATCTA

11 11
GGA-CT - GTAC



Sequence alignment of the target with the
basis structures

Good Alignment

l

Good Model



e Sequence alignment is a basic technique in
homology modeling.

e It is used to establish a one-to-one
correspondence between the amino acids of the
reference protein (template) and those of the
unknown protein (target) in the structurally
conserved regions.

e The correspondence is the basis for transferrin
coordinates from the reference to the mode
protein



e What is sequence alignment ?

- To find out the conserved residues the residues of one
sequence are directly mapped on to the residues of other
sequence. The process of mapping is called sequence

alignment.
Sequence A ‘G‘G"FG‘GAC GGTGGAC
Sequence B  AAAGGTGAC AA A‘GG"I"G‘ . ‘A‘C

(a) ©)
A Sample alignment of two DNA sequences
(a) Un-gapped alignment

(b) Gapped alignment. The "I" indicates matching
nucleotides



Sequence Alignment

Local Global
Alignment  Alignment

e In global alignment whole sequences are
consider where as in local alignment only parts
of sequences are consider.

e Basic Goal: To achieve an alignment which
gives rise to maximum number of matches.
(i.e. high sequence similarity)



Applications:

Global alignment : essential for comparative
modeling.

Local alignment :  sufficient for functional
domains.

N.B: Global alignment is computationally
more time consuming than the local
alignment.



Computational Methods for Alignment

e Dot - matrix analysis

e Dynamic programming (DP)
algorithms

e Heuristic methods



Dot matrix analysis

simple graphical method

used for finding regions of local matches between
Two sequences.

The two sequences to be compared are placed as
row and column of matrix.

All the residues of the first sequence placed
column wise are compared against all the residues
of the second sequence placed row wise.

Whenever a match is found a dot is placed on the
corresponding position in the matrix.



Dotplot:

A dotplot gives an overview of all possible alignments

4|a ® ® [ ®
T @ ® o ®
T @ ® o ®
C | ® ®
Sequence 2 A ° ° PY P
C | ® ®
A ® [ [ ®
T @ o o ®
A ® [ [ ®
T ACA T TATCGT A C

Sequence 1



Dotplot:

In a dotplot each diagonal corresponds to a possible (ungapped) alignment

4+ A ® @ e @
T @ ) @
T @ e ®
C ) @ )
Sequence 2 A ° P ~ ~
C o e )
A o o e ®
T ® e °
A e ® @
T A CA TTACTGT A C

Sequence 1

One possible alignment:



Dynamic Programming

Automatic procedure that finds the best alignment
with an optimal score depending on the chosen parameters.

* Needleman and Wunsch Algorithm
- Global Alignment -

» Smith and Waterman Algorithm
- Local Alignment -



Needleman and Wunsch
(global alignment)

Sequence 1. HEAGAWGHEE
Sequence 2: PAWHEAE

Scoring parameters: BLOSUM50

Gap penalty: Linear gap penalty of 8



Basic principles of dynamic programming

- Creation of an alignment path matrix
- Stepwise calculation of score values

- Backtracking (evaluation of the optimal path)



Creation of .......(..contd..)

Idea:

Build up an optimal alignment using previous solutions
for optimal alignments of smaller subsequences

- Construct matrix F indexed by i and j (one index for each
sequence)

* F(i,j) is the score of the best alighment between the initial
segment x; ;of x up to x; and the initial segment y; ; of y

up to Yj
» Build F(i,j) recursively beginning with F(0,0) = O



Creation of .......(..contd..)

- If F(i-1,j-1), F(i-1,j) and F(i,j-1) are known we can calculate
F(ij)

* Three possibilities: \
* X; and y; are aligned, F(ij) = F(i-1,j-1) + s(x; .y;)

- x; is aligned to a gap, F(ij) = F(i-1,j) - d

* y; is aligned to a gap, F(ij) = F(ij-1) - d 1

* The best score up to (i,j) will be the largest of the three
options



Smith-Waterman Algorithm

e compares segments of all possible lengths
(LOCAL alignments) and chooses whichever
maximises the similarity measure.

e calculates ALL possible paths leading to
each cell

e paths can be of any length and can contain
insertions and deletions



Smith and Waterman
(local alignment)

Two differences:
(0
1 E(i i) = ) F(, J) = F(-1, J-1) + s(x ,yj) \

. F(, J) = max BTN N
. F@, ) =F(@,J-1)-d 1

2. An alignment can now end anywhere in the matrix

Example:
Sequence 1 HEAGAWGHEE
Sequence 2 PAWHEAE

Scoring parameters: BLOSUM
Gap penalty: Linear gap penalty of 8



Heuristic Methods:

e BLAST

e FASTA



Comparative Modelling Methods

-Assembly of rigid fragments

-COMPOSER
(Sutcliffe et al 1987 Protein Eng. 1 377)

-Segment matching modelling (SMM)
(Levitt, J.Mol. Biol. 226 507-533)

-Restrained based methods

-MODELLER
(Sali and Blundell, 1993)



is a program for comparative modeling
written by Prof. Sali's group at Rockefeller
University.

- The program uses a scripting language.

* The user provides an alignment of a sequence to
be modeled with known related structures.

* MODELLER automatically calculates a model
with all non-hydrogen atoms.



The are

- Protein Data Bank (PDB) atom files of known
protein structures;

- their alignment with the target sequence to be

modeled.

The is a model for the target that
includes all non-hydrogen atoms.

* MODELLER can calculate sequence and
structure alignments, however, it is better to
prepare the alignment carefully by other means.



Format for Modeller:

INCLUDE
SET ATOM_FILES_DIRECTORY = ' /:./

SET PDB_EXT = ".atm'
SET STARTING_MODEL =1

SET ENDING_MODEL = 20
SET MD_LEVEL = 'refinel'
SET DEVIATION=4.0

SET KNOWNS ="1JKE'
SET HETATM_IO = off

SET WATER_IO = off

SET ALIGNMENT_FORMAT = 'PIR'
SET SEQUENCE = 'target!’

SET ALNFILE = 'multiplel.ali

CALL ROUTINE = 'model’



Steps for homology Modelling

VDLEKIPIEEVFQQLKCSREGLTTQEGEDRIQIFGPNKLEEKKESKLLKFLGFMWNPLSW
VMEMAAIMAIALANGDGRPPDWQDFVGIICLLVINSTISFIEENNAGNAAAALMAGLAP
K

TKVLRDGKWSEQEAAILVPGDIVSIKLGDIIPADARLLEGDPLKVDQSALTGESLPVTKH
PGQEVFSGSTCKQGEIEAVVIATGVHTFFGKAAHLVYDSTNQVGHFQKVLTAIGNFCICSI

Target sequence

Select PDB in
BLAST database

May select more than one
template, if required

Perform alignment in PIR
format, modeller accept only
PIR format



Download modeller and copy alignment.ali and
model-default.py in modeller folder.

Modeller Key is MODELIRANJE

l

l

Perform energy minimization &
remove bad contacts

l

Visualise the structure by using any
visualiser tool eg. PyMol,
Chimera, VMD, SPDBviewer

Saves server can be run for
Ramachandran plot



Example

TPONITDLCAEYHNTQIYTLNDKIFSY TESLAGKREMAIITFKNGAIFQVEVP
GSQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

l

Perform BLAST search

l

~ N BLASTP programs search protein databases using a protein query. more...
Enter Quer Y oe guence

Enter accession number(s), gi(s), or FASTA sequence(s) & Clear Query subrange &
TPQNITDLCAEYHNTQI¥YTLNDEIFSYTESLAGKREMATITFENGATFQVEVEGSQHIDSQEEATER «
MEDTLRIAYLTEAKVEKLCVWNNKT PHATAALT SMAN

Paste your sequence here To

From

Or, upload file [ Browse.. | @
Job Title
Enter a descriptive title for your BLAST search &
Align two or more sequences &
Select Protein Data Bank
_hoose Search Set

Database Protein Data Bank proteins(pdb)

Organism Exclude '

Optiona

Exclude

Optiona

Entrez Query

Optiona




BLAST Result

l

Sequences producing significant alignments:
Accession Descriptio Max score Total score uery coverage _ . E value
i ek Selecle db|1FGB|F Chain F, T 213 100% 9e-74
), Cholera Toxin B-Pentamer Complexed With Gm1l Pentasacch
), Cholera Toxin =pdb|1XTC|E Chain E, Cholera Toxin =

), Surprising Leads For A Cholera Toxin Receptor Binding Antar
), Cholera Toxin B-Pentamer Complexed With Gm1 Pentasacch

Surprising Leads For A Cholera Toxin Receptor Binding Antac

), Cholera Toxin B-Pentamer Mutant G323r Bound To Receptor

), His57ala Mutant Of Cholera Toxin B-Penatmer =pdb|1G8Z |E

el Binding Site Identified In A Hybrid Between Cholera T

| Structure Of Human Heat-Labile Enterotoxin In Com

| Structure Of The B Subunit Of Human Heat-Labile E

), stal Structure Of The B Subunit Of Heat-Labile Enteroto

in D, 2.2 Angstroms Crystal Structure Of E. Coli Heat-Labile Ente

Do the Sequence alignment between
target & template

>ctx
TPONITDLCAEYHNTQIYTLNDKIFSYTESLAGKREMAIITFKNGAIFQVEVPGSQHID
SOQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHATAATSMAN

>2ciB Template sequence
TPONITDLCAEYHNTQIHTLNDKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHID

SOKKATERMKDTLRIAYLTEAKVEKLCVWNNKTPHATAATISMAN




Use ClustalW for Alignment

Pas _
Sequences in fasta f

Or, upload a file: | Browse...

STEP 2 - Set your Pairwise Alignment Options
Alignment Type: @ Slow Fast
The default settings will fulfill the needs of most users and, for that reason, are not visible.

More options... | (Click here, if you want to view or change the default settings.)

STEP 3 - Set your Multiple Sequence Alignment Options

Protein Weight Matrix GAP OPEM GAP EXTEMSION  GAP DISTAMCES MO EMD GAPS
Gonnet (=] 10 [~ 020 [~] 5 (=] no [~
[TERATIOMN MUMITER CLUSTERING

none |E| 1 |E| N |Z|

OUTPUT Options
FORMAT ORDER

NBRF/PIR || aligned =

elect here PIR



Alignment.ali

>Pl;ctx

sequence:ctx
TPONITDLCAEYHNTQIYTLNDKIFSYTESLAGKREMATITEFKNGAIFQVEVPGSQHID
SQKKATERMKDTLRIAYLTEAKVEKLCVWNNKTPHATAATISMAN

*

>P1;2CHB

structureX:2CHB:1:D:103:D::::
TPONITDLCAEYHNTOIHTLNDKIFSYTESLAGKREMAIITEFKNGATEFQVEVPGSQHID
SOKKATERMKDTLRIAYLTEAKVEKLCVWNNKTPHATAATSMAN

*




Model-default. py

# Homology modeling with multiple templates

from modeller import * # Load standard Modeller
classes

from modeller.automodel import * # Load the automodel class

log.verbose () # request verbose output
env = environ () # create a new MODELLER environment to build
this model in

# directories for input atom files
env.io.atom files directory = './:../atom files'

automodel (env,
alnfile = 'alignment.ali', # alignment filename
knowns ('2CHB'"), # codes of the templates
sequence = 'ctx') # code of the
target
a.starting model= 1 # index of the first model
a.ending model = 30 # index of the last model
# (determines how many models
to calculate)
# do the actual homology







Ramachandran Plot
Scyllal0

Phi (degrees)
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STRUCTURALLY SIMILAR REGIONS



Modelling on the Web

e Prior 1o 1998 homology modelling could
only be done with commercial software or
command-line freeware

e The process was ftime-consuming and
labor-intensive

e The past few years has seen an explosion
in automated web-based homology
modelling servers

e Now anyone can homology model!
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¥ SWISS-MODEL - Netscape

File Edt “iew Go Communicator Help

Modelling requests:

+ First aApproach mode

« Cptimise {project)
mode

« Cligomer modelling

« GPCE mode

Interactive tools

* Swiss-PdbViewer, a
tool for viewing and
manipulating protein
structures and
models {Macintosh,
PC, SGI and Linux).

+ Lookup the ExFDB

[
HELP —

+ Freguently Asked
Questions,

« Yisualising 20 models,
+ Paliahility nf mndels.

=

Contact us

ExPASy Home page

Site Map

Search ExPASvy

SWISS-MODEL

An Automated Comparative Protein
Modelling Server

Introduction:

SWISS-MODEL is an Automated Protein Modelling

Server developped at the GlaxoSmithKline in Geneva,
Switzerland,

= == |

| Dacument: Done

=] =




Application of Comparative Modeling

- Comparative modeling is an efficient way to obtain
useful information about the proteins of interest.
For example - comparative modeling can be helpful
in
- Designing mutants to text hypothesis about the
proteins function.

- Identifying active and binding sites.

- Searching for desighing and improving.

- Modeling substrate specificity.

- predicting antigenic epitopes.

- Simulating protein - protein docking.

- Confirming a remote structural relationship.



ab Initio method of Modelling

Ab initio protein structure prediction is a method to
determine the tertiary structure of protein in the
absence of experimentally solved structure of a
similar/homologous protein. This method builds
protein structure guided by energy FUNCTION.

ab Initio modelling conducts a conformational
search under the guidance of A designed energy
function.

This procedure usually generates a number of
possible conformations (structure decoys) and final
models are selected from them.



Ab initio structure prediction

Name Method Description Link

Evolutionary couplings calculated from correlated mutations in a protein family, used to predict 30 structure
E'fold from sequences alone and ta predict functional residues from coupling strengths. Predicts bath globular and YWebserver Semver i
transmembrane proteins.

On-line senver for pratein modeling

QUARK Mante Carla f t b Senerd
A BB g S5 Snlly (best for ab initio folding in CASPS) |
Server g
-TASSER Threading f tstruct b Or-l far protein madeli
reading fragement structure reassembly n-line server far protein madeling Jowrload @
Selvita Protein Interactive webserver and standalone
Modeling Fackage of tools far pratein modeling program including: CABS ab initio o
Flatform modeling :
ROBETTA Rosetta homology modeling and ab initio fragment assembly with Ginzu domain prediction YWebserver Sener i
Raozetta@@home Distributed-computing implementation of Rosetta algonthm Dawnloadable program p;nga;n@
CABS Reduced modeling toal Downloadable program download &
Bhageerath A computational protocal for modeling and predicting protein structures at the atomic leval YWebserver Semver i
Abalone Molecular Dynamics folding Frogram Example &
FEP-FOLD De novo approach, based on a HWM structural alphabet Orvline serier for peptide structure Semver i

prediction



I-TASSER

e I-TASSER server is an on-line platform for protein structure and
function predictions. 3D models are built based on multiple-threading
alignments by and iterative template fragment assembly
simulations; function inslights are derived by matching the 3D models
with

e I-TASSER (as 'Zhang-Server') was ranked as the No 1 server for
protein structure prediction in recent ) , ,
and experiments.

e It was also ranked as the best for function prediction in . The
server is in active development with the goal to provide the most
accurate structural and function predictions using state-of-the-art
algorithms. The server is only for non-commercial use


http://zhanglab.ccmb.med.umich.edu/LOMETS/
http://zhanglab.ccmb.med.umich.edu/BioLiP/
http://zhanglab.ccmb.med.umich.edu/casp7/21.html
http://predictioncenter.org/casp8/groups_analysis.cgi?target_type=0&gr_type=server&domain_classifications_id=1,2,3,4&field=sum_z_gdt_ts_server_pos
http://prodata.swmed.edu/CASP9/serveronly/DomainsAll.First.html
http://predictioncenter.org/casp10/groups_analysis.cgi?type=server&tbm=on&tbm_hard=on&tbmfm=on&fm=on&submit=Filter
http://predictioncenter.org/casp9/doc/presentations/CASP9_FN.pdf

Copy and paste your sequence here (=1,500 residues, in EASTA format:

ior upload the sequence from your local computer:

[ Choose File ] Mo file chosen

Email: {mandatary, where results will he sent to)

FPassword: {(mandatory, please click here ifyou do not have a password)

|0 {optional, your given name of the protein)

’ Option I: Assign additional restraints & templates to quide FTASSER modeling.

’ Option lI: Exclude some templates from -TASSER template library.

| Run FTASSER | | Clear form







Prediction of the optimal physical configuration
and energy between two molecules

The docking problem optimizes:

= Binding between two molecules such that their orientation
maximizes the interaction

» Evaluates the total energy of interaction such that for the
best binding configuration the binding energy is the
minimum

s The resultant structural changes brought about by the
Interaction



* In the process of "docking” a ligand to a binding site
mimics the natural course of interaction of the ligand
and its receptor via a lowest energy pathway.

« Put a compound in the approximate area where
binding occurs and evaluate the following:

»Do the molecules bind to each other?
*If yes, how strong is the binding?

“*»How does the molecule (or) the protein-ligand
complex look like. (understand the intermolecular
interactions)

*Quantify the extent of binding.



Receptor: The receiving molecule, most commonly a protein or
other biopolymer.

Ligand: The complementary partener molecule which binds to
the receptor. Ligands are most often small molecules but could
also be another biopolymer.

Docking: Computational simulation of a candidate ligand binding
to a receptor.

Binding mode: The orientation of the ligand relative to the
receptor as well as the conformation of the ligand and receptor
when bound to each other.

Pose: A candidate binding mode.

Scoring: The process of evaluating a particular pose by counting
the number of favorable intermolecular interactions such as
hydrogen bonds and hydrophobic contacts.

Ranking: The process of classifying which ligands are most likely
to interact favorably to a particular receptor based on the
predicted free-energy of binding.



> Both molecules usually considered rigid
> 6 degree of freedom, 3 for rotation, 3 for translation

> First apply only steric constraints to limit search
space.

» Then examine energetics of possible binding
confirmations

» The first approximation is to allow the substrate to do
a random walk in the space around the protein to find
the lowest energy.

> Flexible ligand, rigid receptor
> Search space much larger



1. Protein-Protein Docking

2

2. Protein-Ligand Docking

@

e e

optimized
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Some Available Programs to
Perform Docking

Affinity
AutoDock
BioMedCAChe

CAChe for
Medicinal Chemists

DOCK
DockVision

FlexX

Glide

GOLD
Hammerhead
PRO_LEADS
SLIDE

VRDD






Ligand in Active Site Region

P

‘\Al

aa

- Ligand

%
Active site residues

Histidine 6; Phenylalanine 5; Tyrosine 21; Aspartic acid 91; Aspartic acid 48; Tyrosine 51; Histidine 47;
Glycine 29; Leucine 2; Glycine 31; Glycine 22; Alanine 18; Cysteine 28; Valine 20; Lysine 62



Types of Protein-Ligand interactions

Hydrogen bonds

Electrostatic interaction with distance (N...O: 2.8-3.2 &) and
angle dependency (N-H..O: >150°,

Ionic interactions (salt bridges)
Strong coulomb interactions (2.7-3.0 &)




Types of Protein-Ligand interactions

Hydrophobic interacions

Non-directional interactions of lipophilic regions of protein and
ligand (everything not forming polar or hydrogen bond interactions)
Aromatic interactions are directional!

Direct contribution to the binding affinity is small
= acts via displacement of water molecules

Cation-n interactions
mainly polarization effect, often with quarternary nitrogens




Possible docking scenarios

Structure of a ligand in the binding pocket is known
How do other ligands interact with the protein? h; i
How large is the binding affinity? e -F:HE\ -
= Docking programs (mainly flexible ligands only)  _#{0)'\

Only structure of empty binding pocket available
How does a ligand change the pocket? ne
— Protein modelling and/or flexible docking X

Binding pocket is not known "

= try to find it by preceding search algorithms
or extensive docking



More scenarios

Virtual screening

One target protein -
many possible ligands

Selectivity

One ligand -
several targets

Evaluate the interaction?
— scoring or ranking




Protein — Ligand Docking Programs

AutoDock http://www.scripps.edu/mb/oksgn/doc/autodock/
GOLD
http://www.ccdc.cam.ac.uk/products/life scien

FLEXX

http://www.biosolveit.de/FlexX/
GLIDE

http://www.schrodinger.com/
ICM

http://www.molsoft.com/docking.html
Dock

http://www.cmpharm.ucsf.edu/kuntz/dock.html



http://www.scripps.edu/mb/olson/doc/autodock/
http://www.ccdc.cam.ac.uk/products/life_sciences/gold/
http://www.biosolveit.de/FlexX/
http://www.schrodinger.com/
http://www.molsoft.com/docking.html
http://www.cmpharm.ucsf.edu/kuntz/dock.html

“‘*‘*"’mem Docking Programs

/DOCK : http://zlab.bu.edu/zdock/

HEX - hittp://www.csd.abdnae, uk/hex/
GRAMM
http://vakser.bioinformatics.ku.edu/resources/of@
ICM : http://www.molsoft.com/docking,.
CLUSPRO : http://nrc.bu.edu/cluster/clusdoc.htm
KORDO
http://www.bioinfo.de/isb/gch99/poster/zimmermann/
MOLFIT :

http://www.welzmann.ac.il/Chemical Research Support//m
t/

PATCHDOCK:



http://zlab.bu.edu/zdock/
http://www.csd.abdn.ac.uk/hex/
http://vakser.bioinformatics.ku.edu/resources/gramm
http://www.molsoft.com/docking.html
http://nrc.bu.edu/cluster/clusdoc.html
http://www.bioinfo.de/isb/gcb99/poster/zimmermann/
http://www.weizmann.ac.il/Chemical_Research_Support/molfit/




=

08 antioxidants o

| _ Novel Insights into Understanding the Molecular Dialogues hetween
\ Review for this Joumna \ Bipolaroxin and the Ga and G Subunits of the Wheat Heterotrimeric G-

Protein during Host-Pathogen Interaction
, |
by i) Deepti Malviya '-T, () Udai B. Singh 1T @ Budheswar Dehury 2T ) Prakash Singh 372

. Manoj Kumar 1, 2} Shailendra Singh 1, £} Anurag Chaurasia 4, 2} Manoj Kumar Yadav >,
Article Menu Raja Shankar &, ) Manish Roy 1, €2} Jai P. Rai 7% €2 Arup K. Mukherjee 8 2} Ishwar Singh Solanki 3,

[ g

Arun Kumar 9, ) Sunil Kumar 110" & and ) Harsh V. Singh 1" &2

e Spot blotch disease of wheat, caused by the fungus Bipolaris sorokiniana (Sacc.) Shoem., produces
several toxins which interact with the plants and thereby increase the blightening of the wheat
leaves, and Bipolaroxin is one of them.

e There is an urgent need to decipher the molecular interaction between wheat and the toxin
Bipolaroxin for in-depth understanding of host-pathogen interactions.

e we have developed the three-dimensional structure of G-protein alpha subunit from Triticum
aestivum. Molecular docking studies were performed using the active site of the modelled G-protein
alpha and cryo-EM structure of beta subunit from T. aestivum and 'Bipolaroxin’

e All-atoms molecular dynamics (MD) simulation studies were conducted for G-alpha and -beta subunit
and Bipolaroxin complexes to explore the stability, conformational flexibility, and dynamic behavior
of the complex system.

e In planta studies clearly indicated that application of Bipolaroxin significantly impacted the physio-
biochemical pathways in wheat and led to the blightening of leaves in susceptible cultivars as
compared to resistant ones. Further, it interacted with the Ga and Gp subunits of G-protein,
phenylpropanoid, and MAPK pathways, which is clearly supported by the gPCR results.

e This study gives deeper insights into understanding the molecular dialogues between Bipolaroxin and
the Ga and 6P subunits of the wheat heterotrimeric G-protein during host-pathogen interaction.
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un )
Lys32
- Bipolaroxin A

Figure 1. Three-dimensional model and 2D representation of the interaction
between Biopolaroxin and G-Alpha subunit. (A) The solid ribbon representation of three-
dimensional architecture of modeled G alpha subunit of wheat with domains (helical: lower half
and Ras domain: upper half). (B) The topology of architecture of the modeled structure where
the position of each helix and strand has been labeled from N-terminal end to c-terminal end.
(C) Molecular representation of the top-ranked docked complex obtained from molecular
docking of G-alpha subunit with Bipolaroxin rendered using LigPlot* tool. The green dotted lines
show the hydrogen bonds, residues with dark-red semicircles forming hydrophobic contacts, and
residues labeled in green portray the H-bond forming amino acids.



Model Validation Servers Model Quality Parameters Validation Scores

chandran plot)

ProQ
P re mean

METAMOQA GDT_TS

. . Table 1. Model validation statistics of G-protein alpha subunit of Triticum
Figure 2. Ramachandran plot and ProSA z-score analysis of the aestivum using various structural evaluation servers
modeled G-alpha subunit of Triticum aestivum. (A) The Ramachandran 9 ’
plot was generated using Procheck tool embedded in SAVES and the

z-score plot was plotted using ProSA-Web (B).



Figure 3. Intermolecular contact analyses of the top-

XS’Z A:L;gs ranked poses of Bipolaroxin with G-protein alpha

THR Z 2 (A) subunit and G-beta subunit of Triticum

&8 \l aestivum (B). The image was generated using
g 4 BIOVIA DSV.

0
“TN\

SER
A:33

LYS
A:37

Interactions

| van der Waals

| Conventional Hydrogen Bond

Binding No. of H-bond Forming Average H-bond

Target ) Energy . H-bonds Residues Distance [A]
(kcal/mol)

Hydrophobic Contacts

_ . ) Gly28, Glv31, Ser33

Glu29, Ser30, Lys32 CA 7 s
UL, SErn, LYS9s, .75 Thr34, Argl78, Vall79,
Thrl81, Gl}-’El]g,

) - Trp74 Ala305, Phe306

. ) Lvs256, Phe306, ) Y M

G-Beta subunit 7.47 - ys Lﬂﬁ':"e ' le308, Leu350, Gly351

T and Ser354

-:}_J' a5 L i - :I-- L, -
G-Alpha subunit 8.1 Alal77

Table 2. Molecular docking results of Bipolaroxin with G-protein alpha and beta subunit of Triticum aestivum using AutoDock.



Figure 4. Docked conformational states and electrostatic surface representation of Bipolaroxin with G-protein alpha and G beta subunit. (A)
Solid ribbon representation of the G-protein alpha subunit with Bipolaroxin (stick format) with the binding pocket residues. (B) Electrostatic
surface potential map of G-protein alpha subunit with Bipolaroxin (ligand binding pocket has been marked in circle). (C) Solid ribbon
representation of the G protein beta subunit with Bipolaroxin (stick format). (D) Electrostatic surface potential map of G protein beta subunit
with Bipolaroxin (ligand binding pocket has been marked in circle). The electrostatic surface potential maps were generated using APBS and
rendered using Chimera.



Radius of gyration

G-Alpha Complex
— G-Beta Complex

RMSD (nm)

20 30 : 20 30
Time (ns)

Time (ns)

RMS fluctuation
0.6

RMSF (nm)

Figure 5. Intrinsic dynamics stability parameters of the G-alpha and G-beta subunit Bipolaroxin complexes during 50 ns MD simulation. (A)
Root mean square deviation (RMSD) of backbone atoms of the modeled G-alpha subunit and experimental beta subunit in complexes with
Bipolaroxin during 50 ns MD. (B) The compactness of the trajectory by calculating the radius of gyration (R,) of the proteins during 50 ns MD in
aqueous solution. (C) The root mean square fluctuation (RMSF) for Ca atoms of the G-alpha (left) and G-beta (right) complex systems.
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Figure 6. PCA of the protein—ligand (Ga and GB) systems using the resultant MD trajectories. (A) Eigenvalues for the complex as
a function of the first 20 eigenvectors. (B) The cloud epitomizes the 50 ns trajectories projected onto the first two PCs where the x-
axis and y-axis show the projection of the structures of the main-chain atoms in the MD trajectories onto the phase space defined
by first two sets PCs (PC1 vs. PC2). (C) Porcupine plot depicting the movement of main-chain atoms of the first PC (PC1) of the
G-a- Bipolaroxin complex. (D) Porcupine plot depicting the movement of main-chain atoms of the first PC of the G-- Bipolaroxin
complex. The direction of arrows indicates the motion and thickness of the arrow indicates the strength of motion. The image was
generated using modevector.py script in PyMOL.



Figure 7. Structural superimposed view of the top two structural ensemble (top-ranked two clusters obtained from clustering). (A)
Superimposed architecture of top-ranked two clusters from G-alpha subunit complex. (B) Superimposed architecture of top-ranked two clusters
from G-beta subunit complex. Both the images were rendered using PyMOL. (C) Intermolecular contact of top-ranked cluster of Bipolaroxin with
Ga subunit where the H-bond forming residues are marked in red while other nonbonded contacts are in pink. (D) Protein—ligand interaction
analysis of the top-ranked cluster of Bipolaroxin with GB subunit where the H-bond forming residues are marked in blue while other nonbonded

contacts are in red. The image was generated using BIOVIA DSV.
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_. Biocomputational Assessment of Natural Compounds as a Potent
Review for this Journa | Inhibitor to Quorum Sensors in Ralstonia solanacearum

Submit to this Journa |

Ralstonia solanacearum is among the most damaging bacterial phytopathogens with a wide number of
hosts and a broad geographic distribution worldwide. The pathway of phenotype conversion (Phc) is
operated by quorum-sensing signals and modulated through the (R)-methyl 3-hydroxypalmitate (3-OH
PAME) in R. solanacearum. However, the molecular structures of the Phc pathway components are not
yet established, and the structural consequences of 3-OH PAME on quorum sensing are not well
studied.

In this study, 3D structures of quorum-sensing proteins of the Phc pathway (PhcA and PhcR) were

computationally modeled, followed by the virtual screening of the natural compounds library against
the predicted active site residues of PhcA and PhcR proteins that could be employed in limiting
signaling through 3-OH PAME.
Two of the best scoring common ligands ZINC000014762512 and ZINC000011865192 for PhcA and
PhcR were further analyzed utilizing orbital energies such as HOMO and LUMO, followed by
molecular dynamics simulations of the complexes for 100 ns to determine the ligands binding stability.
The findings indicate that ZINC000014762512 and ZINC000011865192 may be capable of inhibiting
both PhcA and PhcR. We believe that, after further validation, these compounds may have the potential
to disrupt bacterial quorum sensing and thus control this devastating phytopathogenic bacterial
pathogen.



Figure Interaction of PhcA with
ZINC000014762512. (B) Interaction of

Figure. Intermolecular H-bonding,

: Ut ' | electrostatic, and hydrophobic interactions
PhcA with ZINC000011865192. ZINC000014762512 (B) Interaction of " between PhecA—
PhcR with ZINC000011865192. ZINC000014762512 complexes. The image

(A) is drawn by the LigPlot+ tool and (B)
ligand interaction module of Schrddinger.
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Figure Conformational
: N o\ VA constancy of ‘Apo’ and ‘Holo’
Lt T "KIT 11 I states of PhcA protein
.. A ... simulation study. (A)
Backbone-RMSD of PhcA. (B)
Ca-RMSF profile of PhcA. (C)
Rg profile of PhcA. (D) SASA
analysis of Apo and Holo
states of PhcA protein
throughout the simulations.
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PhCR-ZINCOOOO1 1865192 complex PhOR-ZINCO00011865192 complex

Figure 5. Intermolecular H-bonding, electrostatic,
and hydrophobic interactions formed between
PhccR-ZINC000011865192 complexes. The image
(A) is drawn by the LigPlot+ tool and (B) ligand
interaction module of Schrddinger.
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Design, synthesis, and biological evaluation of a small
molecule oral agonist of the glucagon-like-peptide-1

receptor

wiblication, Decaember 22, 2021, and in revised farm, March 15, 2022 Fublished, Pagpers im Press, April 2, 20232,

Khyati Girdhar ., Shilpa Thakur ', Pankaj Gaur » Abhinav Choubey , Surbhi Dogra , Budheswar Dehury
Sunil Kumar , Bidisha Biswas , Durgesh Kumar Dwivedi , Subrata Ghosh , and Prosenjit Mondal

« An absolute or relative deficiency of pancreatic f-cells mass and functionality is a crucial pathological
feature common to type 1 diabetes mellitus and type 2 diabetes mellitus. Glucagon-like-peptide-1
receptor (GLP1R) agonists have been the focus of considerable research attention for their ability to
protect B-cell mass and augment insulin secretion with no risk of hypoglycemia.

« Presently commercially available GLP1R agonists are peptides that limit their use due to cost,
stability, and mode of administration.

 To address this drawback, strategically designed distinct sets of small molecules were docked on
GLP1R ectodomain and compared with previously known small molecule GLP1R agonists. One of the
small molecule PK2 (6-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-6Hindolo[2,3-b]quinoxaline)
displays stable binding with GLP1R ectodomain and induces GLP1R internalization and increasing
CAMP levels.

« PK2 also increases insulin secretion in the INS1 cells. The oral administration of PK2 protects against
diabetes induced by multiple low-dose streptozotocin administration by lowering high blood glucose
levels.

« Similar to GLP1R peptidic agonists, treatment of PK2 induces B-cell replication and attenuate B-cell
apoptosis in STZ-treated mice. Mechanistically, this protection was associated with decreased
thioredoxin-interacting protein expression, a potent inducer of diabetic B-cell apoptosis and
dysfunction. Together, this report describes a small molecule, PK2, as an orally active nonpeptidic
GLP1R agonist that has efficacy to preserve or restore functional B-cell mass
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In-silico and in-vitro investigation of STAT3-

PINVMI1 heterodimeric complex: Its
mechanism and inhibition by curcumin for
cancer therapeutics

Sutapa Mahata ®, Santosh Kumar Behera 7, Sunil Kumar ©, Pranab Kumar S

Sinjini Sarkar *, Mobashar Hussain Urf Turabe Fazil © 1, Vilas D. MNasare = 2

* The functional activity among and , are key signaling events for cancer cell function. Curcumin, a
diarylheptanoid isolated from turmeric, effectively inhibits STAT3 signaling.

» Selectively, we attempted to address interactions of STAT3, PIM1 and Curcumin for therapeutic intervention
using in silico and in vitro experimental approaches.

» Firstly, protein-protein interactions (PPI) between STAT3-PIM1 by studies reflected salt
bridges among Arg279 (STAT3)-Glu140 (PIM1) and Arg282 (STAT3)-Aspl100 (PIM1), with a of
—-38.6 kcal/mol.

« Secondly, molecular dynamics simulations of heterodimeric STAT3-PIM1 complex with curcumin revealed
binding of curcumin on PIM-1 interface of the complex through (Asp155) and hydrophobic
interactions (Leul3, Phel8, Val21, etc.) with a binding energy of —7.3 kcal/mol.

* These PPIs were confirmed in vitro by assays in MDA-MB-231 cells. Corroborating our

results, expression levels of STAT3 and PIM1 decreased after curcumin treatment.

» We observed that PIM1 interacts with STAT3 and these functional interactions are disrupted by curcumin. The
calculated band energy gap of heterodimeric STAT3-PIM1-Curcumin complex was of 9.621 kcal/mol.

* The present study revealed the role of curcumin in STAT3/PIM1 signaling and its binding affinity to the
complex for design of advanced cancer therapeutics.


https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/stat3
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pim1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/docking-molecular
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/binding-affinity
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hydrogen-bond
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoprecipitation
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A Drug Repurposing Approach io ldeniify Therapesuiics by Screening Painogen Box

Exploiting SARS-CoV-2 Vain Protease

* (COVID-19) is caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV2) and
Is responsible for a higher degree of morbidity and mortality worldwide. There is a smaller
number of approved therapeutics available to target the SARS-CoV-2 virus. The main protease
(Mpro) enzyme of SARS-CoV-2 is essential for replication and transcription of the viral
genome, thus could be a potent target for the treatment of COVID-109.

We performed an in-silico screening analysis of 400 diverse bioactive inhibitors with proven
antibacterial and antiviral properties against Mpro drug target. Ten compounds showed a
higher binding affinity for Mpro than the reference compound (N3), with desired
physicochemical properties.

in-depth docking and superimposition revealed that three compounds (MMV1782211,
MMV1782220, and MMV1578574) are actively interacting with the catalytic domain of Mpro. In
addition, the molecular dynamics simulation study showed a solid and stable interaction of

MMV178221-Mpro complex compared to the other two molecules (MMV1782220, and
MMV1578574).

In conclusion, the present in silico analysis revealed MMV1782211 as a possible and potent
molecule to target the Mpro and must be explored in vitro and in vivo to combat the COVID-19
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Figure 3. Binding of ligands at the MP® receptor protein. (A) Secondary structure representation B) Surface view; Only three ligan
(MMV 1782220 MMV1782211 and MMV1578574) out of 10 binds at the main active site of the receptor (C) enlarged surface view
the main active site showing three ligands at main active site pocket along with N3 (yellow color). Chimera software is used 1
visualization of complexes.
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Figure 4. Binding modes of minimum energy conformers after docking experiments of MMV compounds: 3D structure of MP™
protein is shown as molecular surface models in Tan color and ligands are represented as ball and stick models on the left-hand
side using Chimera software while ligand-receptor interactions and their close contact residues are visible on the right-hand side
pane using LigPlot program where hydrogen bonds are |abeled in green color.
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Figure 5. Comparison of molecular dynamics simulation trajectories (A) Root mean square deviation, (B) Root mean square
fluctuations, (C) Radius of gyration, and (D) Number of hydrogen bond formation, for MP protein docked with the reference ligand
N3 (black), MMV1782211 (red), MMV1782220 (green], and MMV1578574 (blug) over the 50 ns simulations. The trajectory graphs are
developed using XMGRACE tool.
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Y12F mutation in Pseudomonas plecoglossicida S7 lipase enhances its
thermal and pH stability for industrial applications: a combination of
in silico and in vitro study
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Abstract

Appropriate amino acid substitutions are critical for protein engineering to redesign catalytic properties of industrially
important enzymes like lipases. The present study aimed for improving the environmental stability of lhipase from Pseu-
domonas plecoglossicida 87 through site-directed mutagenesis driven by computational studies. fipA gene was amplified
and sequenced. Both wild type (WT) and mutant type (MT) lipase genes were expressed mnto the pET SUMO system.
The expressed proteins were purified and characterized for pH and thermostability. The lipase gene belonged to subfamily
I.1 hpase. Molecular dynamics revealed that ¥ 12F-palmitic acid complex had a greater binding affimity (-6.3 Kcal/mol)
than WT (-6.0 Kcal/'mol) complex. Interestingly, MDS showed that the binding affinity of WT-complex (-130.314 + 15.11
KJ/mol) was more than mutant complex (-108.405+ 69.376 KJ/mol) with a marked mcrease mn the electrostatic energy
of mutant (-26.969 + 12.646 KJ/mol) as compared to WT (-15.082 + 13.802 KJ/mol). Y12F mutant yvielded 1.27 folds
increase 1n lipase activity at 55 °C as compared to the purified WT protein. Also, ¥ |2F mutant showed increased activity
(~ 1.2 tolds each) at both pH 6 and 10. P plecoglossicida S7. Y12F mutation altered the kinetic parameters of MT (K-
1.38 mM, V__ - 22.32 uyM/min) as compared to WT (K_- 1.52 mM, V __ - 2976 pM/mm) thus increasing the binding
affinity of mutant lipase. Y12F mutant lipase with better pH and thermal stability can be used in biocatalysis.

Keywords Pseudomonas - Lipase - Protein engineering - Molecular Dynamics
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Fig. 1 Molccular and phylogenetic analyses of lipA gene from P, plecoglossicida ST (A) PCR amplification of lipA gene. (B) Phylogram showing
the evolutionary relatedness of lip4 with lipases from other Pseudomonas spp
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Fig.2 Cloning of lipA gene from P. plecoglossicida ST showing (A) positive transformants on Luria Bertani plate supplemented with Kanamycin
(50 pg/mlL) and (B) molccular confirmation of positive transformants though colony PCR.
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Fig.3 in silico prediction and validation of lipase (LipA) from P. plecoglossicida ST showing (A) 3-D protein model and (B) contour plot of amino
acid residucs obtained from Verify3D tool of Structure validation and analysis (SAVES) server

Table 1 Interactions of mutants with palmitate as substrate

Sl. No Substitutions Theoretical Interacting residues
binding score
(Kcal/mol)

o1 F4Y -5.8 LEUs3, LEU&7, ALAT3

02 Y12F .3 MET!, PHE4, PHE12,
VALIZ, LEUI3I1,
PHE248

03 ESSK 5.6 WAL, LEU4S, ILE4%

Table 2 The distribution of energy terms contnbuting to the binding
free energy of each of the lipase complex-palmitic acid structure. The
free energy was computed using MM/PBSA method
vainder  Electro- Polar solva- SASA  Binding
Waal static lion energy energy  energy
COETZY  energy
Wild -203.502 -15.082 [09.002 200732 -130.314
Type b- 1852 4/~ 13802 4/~ 15337 4- /- 15.11
(345
Mutant -168.011 -26.969 10:7.341 20766 -108.405
- b- 12640 +- 15582 4+~ -
&0 1 0.773 69376
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In silico mutation of aromatic with aliphatic amino acid residues in Clostridium
perfringens epsilon toxin (ETX) reduces its binding efficiency to Caprine Myelin
and lymphocyte (MAL) protein receptors

Sunil Kumar®*, Santosh Kumar Behera®*, Kumaresan Gururaj“*, Anurag Chaurasia®, Sneha Murmu?,
Ratna Prabha®, U. B. Angadi®, Rajveer Singh Pawaiya“ and Anil Rai®

*ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India; ENational Institute of Pharmaceutical Education and Research,
Ahmedabad, India; “ICAR-Central Institute for Research on Goats, Makhdoom, Mathura, India; “ICAR-Indian Institute of Vegetable Research,
Varanasi, India

Communicated by Ramaswamy H. 5arma

ABSTRACT ARTICLE HISTORY
Enterotoxaemia (ET) is a severe disease that affects domestic ruminants, including sheep and goats, Received 19 December 2022
and is caused by Clostridium perfringens type B and D strains. The disease is characterized by the pro- Accepted 11 April 2023
duction of Epsilon toxin (ETX), which has a significant impact on the farming industry due to its high
lethality. The binding of ETX to the host cell receptor is crucial, but still poorly understood. Therefore,
the structural features of goat Myelin and lymphocytic (MAL) protein were investigated and defined in enterotoxaemia (ET): MAL
this study. We induced the mutations in aromatic amino acid residues of ETX and substituted them protein; pmmin_pmiein
with aliphatic residues at domains | and Il. Subsequently, protein-protein interactions (PPI) were per- interactions: molecular
formed between ETX (wild)-MAL and ETX (mutated)-MAL protein predicting the domain sites of ETX dynamics

structure. Further, molecular dynamics (MD) simulation studies were performed for both complexes to

investigate the dynamic behavior of the proteins. The binding efficiency between 'ETX (wild)-MAL pro-

tein’ and ‘ETX (mutated)-MAL protein complex’ interactions were compared and showed that the for-

mer had stronger interactions and binding efficiency due to the higher stability of the complex. The

MD analysis showed destabilization and higher fluctuations in the PPl of the mutated heterodimeric

ETX-MAL complex which is otherwise essential for its functional conformation. Such kind of interac-

tions with mutated functional domains of ligands provided much-needed clarity in understanding the

pre-pore complex formation of epsilon toxin with the MAL protein receptor of goats. The findings

from this study would provide an impetus for designing a novel vaccine for Enterotoxaemia in goats.

JBSD: 2023; IF: 5.25

KEYWORDS
Epsilon toxin [ETX);
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pre-simulated Epsilon touln (ETX-wild) with pre-simulsted Myelin and lymphacyte (MAL) protein. (d) The protein-protedn interaction of pre-simulated Epsllon toxin
(ETX-mutated) with pre-simulated Myelin and lymphocyte (MAL) proteln,
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Novel insight into the molecular interaction of catalase and sucrose: A R
combination of in silico and in planta assays study e

Sunil Kumar™*, Khurshid Ahmad”, Gitanjali Tandon”, Udai B..Singh”, Yachana Jha",
Dipak T. Nagrale™’, Mahender Kumar Singh®, Khyati Girdhar', Prosenjit Mondal""

* [CAR-NBAIM, Kushmaer, Maw, UP 275103, India

b SHUATS, Allzhabad, India

“N. V Patel College of Pure and Appled Sciences, V.V Nagar, Anand, Gujarar 3881240, India
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ARTICLE INFO ABSTRACT

Keywords: Osmolytes are known to be an important factor for the sabilization and proficient functioning of proteins.
Catalase However, the stabilization mechanism of proteins by the interaction of csmolytes is still not well explored. Here,
Docking

we pirformed in silico 3D strscture modelling of rice catalase-A (CatA) protein amd its molecular interaction with

ME‘:”'"A sucrose. Further, in plantn was conducted to see the effects of sucrose on catalase activity in foe grown in sal ine
M . . . , . . . .
S sodic soil at different time intervals. The molecular docking experiments results showed that sucrose can be

ligated with CatA, protein forming hydrogen bond with precise amino acid residues like, R49, RE9, P209, F311,
¥335 and T338. The interaction also comprises the contribution of hydrophobic amino acid residues like V50,
V51, H52 1123, A310, Q33% and R342, The planta in vitro catal ase activity assay showed that plants treated with
sucrose significantly affect the catalase activity in rice. Results revealed that maximum catalase activity was
recorded in plants treated with 150 and 200 ppm of sucrose after 15days of sucrose application. However,
minimum activity was recorded in control plants. We believe that our study will provides an advanced under-
standing of catalase activity in plants exposed to csmotic stress.
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Fig. 6. Molecular interaction between catalase and sucrose.

Fig. 7. Quantitative estimation of catalase activity.
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Fig. 3. Ca RMSF profile of catalase sucrose complex during 50 ns MD.
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RNA-binding proteins (often abbreviated as RBPs)
« are proteins that bind to the double or single stranded RNAin cells
+ and participate in forming ribonucleoprotein complexes.

+ RBPs contain various structural motifs, such as
v RNA recognition motif (RRM),
v dsRNA binding domain,
v zinc finger and others.

* They are cytoplasmic and nuclear proteins

* since most mature RNA is exported from the nucleus relatively quickly, most RBPs in the nucleus exist as
complexes of protein and pre-mRNA called heterogeneous ribonucleoprotein particles (hnRNPs).

» RBPs have crucial roles in various cellular processes such as:
» cellular function, transport and localization.
* They especially play a major role in post-transcriptional control of RNAs
v (splicing, polyadenylation, mRNA stabilization, mRNA localization and translation.

+ Eukaryotic cells encode diverse RBPs, approximately 500 genes, with unique RNA-binding activity
and protein—protein interaction.

* During evolution, the diversity of RBPs greatly increased with the increase in the number of introns.

* Diversity enabled eukaryotic cells to utilize RNA exons in various arrangements, giving rise to a unique
RNP (ribonucleoprotein) for each RNA.




Structure

* Many RBPs have modular structures and are composed of multiple repeats of just a few specific basic
domains that often have limited sequences.

* These sequences are |

» then arranged in varying 11ons to fulfill the need for diversity. A specific
protein's recognition of a specific RNA has evolved ' e rearranaement of these few bas

+ Each basic domain recognizes RNA, but many of these proteins require multiple copies of one of the
many common domains to function.

Diversity

* As nuclear RNA emerges from RNA polymerase, RNA transcripts are immediately covered with RNA-
binding proteins and function in RNA biogenesis, maturation, transport, cellular localization and stability.

* All RBPs bind RNA, however they do so with different RNA-sequence specificities and affinities, which
allows the RBPs to be as diverse as their targets and functions.
* These targets include
+ mRNA, which codes for proteins, as well as a number of functional non-coding RNAs.
* NcRNAs almost always function as ribonucleoprotein complexes and not as naked RNASs.
v non-coding RNASs include
v microRNAs,

v small interfering RNAs (siRNA), as well as
v splicesomal small nuclear RNAs (snRNA).




+ RNA-bin hly specific recognit helir RNAtargels by recognizing their sequences and
structures.

» Specific binding of the RNA-binding proteins allow them to distinguish their tar Xets and regulate a variety of
cellular functions via control of the generation, maturation, and Ilfespan of the RN transcnpt

* This interaction begins during transcription as «orme =EFs o caradaion whereas
others only transiently bind to RNA to regulate RNA S)II(,tng processmg transport and localization. In this
section, three classes of the most widely studied RNA-binding domains will be discussed

v RNA-recognition motif,
v double-stranded RNA-binding motif,
v zinc-finger motif).

RNA-recognition motif (RRM)

* The RNA recognition motif, which is the most common RNA-binding motif, is a small protein domain of 75~
85 amino_acids that forms a four-stranded B-sheet against the two a-helices. This recognition motif exerts its
role in numerous cellular functions, especially

v in mRNA/rRNA processing, splicing, translation regulation, RNA export, and RNA stability.

. T?n sttructures of an RRM have been tdenttﬁed through NMR spectroscopy and X-ray crystallography These
structures 1l 1

& ['7 \ uons

+ Despite their complexity, all ten structures have some common features, All RRMs' main protein surfaces' four-
stranded B-sheet was found fo interact with the RNA, which usually contacts two or three nucleotides in a
specific manner. In addition, strong RNA binding affinity and specificity towards variation are achieved through
an interaction between the inter-domain linker and the RNA and between RRMs themselves. This plasticity of
the RRM explains why RRM is the most abundant domain and why it plays an important role in various
biological functions



Double-stranded RNA-binding motif

The double-stranded RNA-binding motif (dsRM, dsRBD), a 70-75 amino-acid domain, plays a critical role in RNA
processing, RNA localization, RNA interference, RNA editing, and translational repression,

All three structures of the domain solved as of 2005 possess uniting features that explain how dsRMs only bind to dsRNA
instead of dsDNA.

The dsRMs were found to interact along the RNA duplex via both a-helices and B1-B2 loop. Moreover, all three dsRBM
structures make contact with the sugar-phosphate backbone of the major groove and of one minor groove, which is mediated
by the B1-B2 loop along with the N-terminus region of the alpha helix 2,

This interaction is a unique adaptation for the shape of an RNA double helix as it involves 2'-hydroxyls and phosphate oxygen.

Despite the common structural features among dsRBMs, they exhibit distinct chemical frameworks, which permits specificity for
a variety for RNA structures including stem-loops, internal loops, bulges or helices containing mismatches.

Zinc fingers

CCHH-type zinc-finger domains are the most common DNA-binding domain within the eukaryotic genome. In order to attain
high sequence-specific recognition of DNA, several zinc ﬁnggzrs are utilized in a modular fashion. Zinc fingers exhibit fpa
protein fold in which a B-hairpin and a a-helix are joined via a Zn* ion.

Furthermore, the interaction between protein side-chains of the a-helix with the DNA bases in the major groove allows for the
DNA-sequence-specific recognition. Despite its wide recognition of DNA, there has been recent discoveries that zinc fingers
also have the ability to recognize RNA.

In addition to CCHH zinc fingers, CCCH zinc fingers were recently discovered to emplo sequence-sgeciﬁc recognition of
single-stranded RNA through an interaction between intermolecular hydrogen bonds and Watson-Crick edges of the RNA
bases. CCHH-type zinc fingers employ two methods of RNA binding.

First, the zinc fingers exert non-specific interaction with the backbone of a double helix whereas the second mode allows zinc
fingers to specifically recognize the individual bases that bulge out. Differing from the CCHH-type, the CCCH-type zinc finger
displays another mode of RNA binding, in which single-stranded RNA is identified in a sequence-specific manner, Overall, zinc
fingers can directly recognize DNA via binding to dsDNA sequence and RNA via binding to ssRNA sequence.






